Abstract:Myopia screening using cutting-edge ultra-widefield (UWF) fundus imaging and joint modeling of multiple discrete and continuous clinical scores presents a promising new paradigm for multi-task problems in Ophthalmology. The bi-channel framework that arises from the Ophthalmic phenomenon of ``interocular asymmetries'' of both eyes (OU) calls for new employment on the SOTA transformer-based models. However, the application of copula models for multiple mixed discrete-continuous labels on deep learning (DL) is challenging. Moreover, the application of advanced large transformer-based models to small medical datasets is challenging due to overfitting and computational resource constraints. To resolve these challenges, we propose OU-CoViT: a novel Copula-Enhanced Bi-Channel Multi-Task Vision Transformers with Dual Adaptation for OU-UWF images, which can i) incorporate conditional correlation information across multiple discrete and continuous labels within a deep learning framework (by deriving the closed form of a novel Copula Loss); ii) take OU inputs subject to both high correlation and interocular asymmetries using a bi-channel model with dual adaptation; and iii) enable the adaptation of large vision transformer (ViT) models to small medical datasets. Solid experiments demonstrate that OU-CoViT significantly improves prediction performance compared to single-channel baseline models with empirical loss. Furthermore, the novel architecture of OU-CoViT allows generalizability and extensions of our dual adaptation and Copula Loss to various ViT variants and large DL models on small medical datasets. Our approach opens up new possibilities for joint modeling of heterogeneous multi-channel input and mixed discrete-continuous clinical scores in medical practices and has the potential to advance AI-assisted clinical decision-making in various medical domains beyond Ophthalmology.
Abstract:Myopia screening using cutting-edge ultra-widefield (UWF) fundus imaging is potentially significant for ophthalmic outcomes. Current multidisciplinary research between ophthalmology and deep learning (DL) concentrates primarily on disease classification and diagnosis using single-eye images, largely ignoring joint modeling and prediction for Oculus Uterque (OU, both eyes). Inspired by the complex relationships between OU and the high correlation between the (continuous) outcome labels (Spherical Equivalent and Axial Length), we propose a framework of copula-enhanced adapter convolutional neural network (CNN) learning with OU UWF fundus images (OUCopula) for joint prediction of multiple clinical scores. We design a novel bi-channel multi-label CNN that can (1) take bi-channel image inputs subject to both high correlation and heterogeneity (by sharing the same backbone network and employing adapters to parameterize the channel-wise discrepancy), and (2) incorporate correlation information between continuous output labels (using a copula). Solid experiments show that OUCopula achieves satisfactory performance in myopia score prediction compared to backbone models. Moreover, OUCopula can far exceed the performance of models constructed for single-eye inputs. Importantly, our study also hints at the potential extension of the bi-channel model to a multi-channel paradigm and the generalizability of OUCopula across various backbone CNNs.
Abstract:Time series analysis and modelling constitute a crucial research area. Traditional artificial neural networks struggle with complex, non-stationary time series data due to high computational complexity, limited ability to capture temporal information, and difficulty in handling event-driven data. To address these challenges, we propose a Multi-modal Time Series Analysis Model Based on Spiking Neural Network (MTSA-SNN). The Pulse Encoder unifies the encoding of temporal images and sequential information in a common pulse-based representation. The Joint Learning Module employs a joint learning function and weight allocation mechanism to fuse information from multi-modal pulse signals complementary. Additionally, we incorporate wavelet transform operations to enhance the model's ability to analyze and evaluate temporal information. Experimental results demonstrate that our method achieved superior performance on three complex time-series tasks. This work provides an effective event-driven approach to overcome the challenges associated with analyzing intricate temporal information. Access to the source code is available at https://github.com/Chenngzz/MTSA-SNN}{https://github.com/Chenngzz/MTSA-SNN
Abstract:Ultra-widefield (UWF) fundus images are replacing traditional fundus images in screening, detection, prediction, and treatment of complications related to myopia because their much broader visual range is advantageous for highly myopic eyes. Spherical equivalent (SE) is extensively used as the main myopia outcome measure, and axial length (AL) has drawn increasing interest as an important ocular component for assessing myopia. Cutting-edge studies show that SE and AL are strongly correlated. Using the joint information from SE and AL is potentially better than using either separately. In the deep learning community, though there is research on multiple-response tasks with a 3D image biomarker, dependence among responses is only sporadically taken into consideration. Inspired by the spirit that information extracted from the data by statistical methods can improve the prediction accuracy of deep learning models, we formulate a class of multivariate response regression models with a higher-order tensor biomarker, for the bivariate tasks of regression-classification and regression-regression. Specifically, we propose a copula-enhanced convolutional neural network (CeCNN) framework that incorporates the dependence between responses through a Gaussian copula (with parameters estimated from a warm-up CNN) and uses the induced copula-likelihood loss with the backbone CNNs. We establish the statistical framework and algorithms for the aforementioned two bivariate tasks. We show that the CeCNN has better prediction accuracy after adding the dependency information to the backbone models. The modeling and the proposed CeCNN algorithm are applicable beyond the UWF scenario and can be effective with other backbones beyond ResNet and LeNet.