Abstract:The propensity of Large Language Models (LLMs) to generate hallucinations and non-factual content undermines their reliability in high-stakes domains, where rigorous control over Type I errors (the conditional probability of incorrectly classifying hallucinations as truthful content) is essential. Despite its importance, formal verification of LLM factuality with such guarantees remains largely unexplored. In this paper, we introduce FactTest, a novel framework that statistically assesses whether an LLM can confidently provide correct answers to given questions with high-probability correctness guarantees. We formulate factuality testing as hypothesis testing problem to enforce an upper bound of Type I errors at user-specified significance levels. Notably, we prove that our framework also ensures strong Type II error control under mild conditions and can be extended to maintain its effectiveness when covariate shifts exist. %These analyses are amenable to the principled NP framework. Our approach is distribution-free and works for any number of human-annotated samples. It is model-agnostic and applies to any black-box or white-box LM. Extensive experiments on question-answering (QA) and multiple-choice benchmarks demonstrate that \approach effectively detects hallucinations and improves the model's ability to abstain from answering unknown questions, leading to an over 40% accuracy improvement.
Abstract:This study intends to systematically disentangle pure logic reasoning and text understanding by investigating the contrast across abstract and contextualized logical problems from a comprehensive set of domains. We explore whether LLMs demonstrate genuine reasoning capabilities across various domains when the underlying logical structure remains constant. We focus on two main questions (1) Can abstract logical problems alone accurately benchmark an LLM's reasoning ability in real-world scenarios, disentangled from contextual support in practical settings? (2) Does fine-tuning LLMs on abstract logic problem generalize to contextualized logic problems and vice versa? To investigate these questions, we focus on standard propositional logic, specifically propositional deductive and abductive logic reasoning. In particular, we construct instantiated datasets for deductive and abductive reasoning with 4 levels of difficulty, encompassing 12 distinct categories or domains based on the categorization of Wikipedia. Our experiments aim to provide insights into disentangling context in logical reasoning and the true reasoning capabilities of LLMs and their generalization potential. The code and dataset are available at: https://github.com/agiresearch/ContextHub.
Abstract:This paper presents BattleAgent, an emulation system that combines the Large Vision-Language Model and Multi-agent System. This novel system aims to simulate complex dynamic interactions among multiple agents, as well as between agents and their environments, over a period of time. It emulates both the decision-making processes of leaders and the viewpoints of ordinary participants, such as soldiers. The emulation showcases the current capabilities of agents, featuring fine-grained multi-modal interactions between agents and landscapes. It develops customizable agent structures to meet specific situational requirements, for example, a variety of battle-related activities like scouting and trench digging. These components collaborate to recreate historical events in a lively and comprehensive manner while offering insights into the thoughts and feelings of individuals from diverse viewpoints. The technological foundations of BattleAgent establish detailed and immersive settings for historical battles, enabling individual agents to partake in, observe, and dynamically respond to evolving battle scenarios. This methodology holds the potential to substantially deepen our understanding of historical events, particularly through individual accounts. Such initiatives can also aid historical research, as conventional historical narratives often lack documentation and prioritize the perspectives of decision-makers, thereby overlooking the experiences of ordinary individuals. BattelAgent illustrates AI's potential to revitalize the human aspect in crucial social events, thereby fostering a more nuanced collective understanding and driving the progressive development of human society.