Abstract:This study introduces an integrated approach to recognizing Arabic Sign Language (ArSL) using state-of-the-art deep learning models such as MobileNetV3, ResNet50, and EfficientNet-B2. These models are further enhanced by explainable AI (XAI) techniques to boost interpretability. The ArSL2018 and RGB Arabic Alphabets Sign Language (AASL) datasets are employed, with EfficientNet-B2 achieving peak accuracies of 99.48\% and 98.99\%, respectively. Key innovations include sophisticated data augmentation methods to mitigate class imbalance, implementation of stratified 5-fold cross-validation for better generalization, and the use of Grad-CAM for clear model decision transparency. The proposed system not only sets new benchmarks in recognition accuracy but also emphasizes interpretability, making it suitable for applications in healthcare, education, and inclusive communication technologies.
Abstract:Lymphoma diagnosis, particularly distinguishing between subtypes, is critical for effective treatment but remains challenging due to the subtle morphological differences in histopathological images. This study presents a novel hybrid deep learning framework that combines DenseNet201 for feature extraction with a Dense Neural Network (DNN) for classification, optimized using the Harris Hawks Optimization (HHO) algorithm. The model was trained on a dataset of 15,000 biopsy images, spanning three lymphoma subtypes: Chronic Lymphocytic Leukemia (CLL), Follicular Lymphoma (FL), and Mantle Cell Lymphoma (MCL). Our approach achieved a testing accuracy of 99.33\%, demonstrating significant improvements in both accuracy and model interpretability. Comprehensive evaluation using precision, recall, F1-score, and ROC-AUC underscores the model's robustness and potential for clinical adoption. This framework offers a scalable solution for improving diagnostic accuracy and efficiency in oncology.
Abstract:This paper presents an Arabic Alphabet Sign Language recognition approach, using deep learning methods in conjunction with transfer learning and transformer-based models. We study the performance of the different variants on two publicly available datasets, namely ArSL2018 and AASL. This task will make full use of state-of-the-art CNN architectures like ResNet50, MobileNetV2, and EfficientNetB7, and the latest transformer models such as Google ViT and Microsoft Swin Transformer. These pre-trained models have been fine-tuned on the above datasets in an attempt to capture some unique features of Arabic sign language motions. Experimental results present evidence that the suggested methodology can receive a high recognition accuracy, by up to 99.6\% and 99.43\% on ArSL2018 and AASL, respectively. That is far beyond the previously reported state-of-the-art approaches. This performance opens up even more avenues for communication that may be more accessible to Arabic-speaking deaf and hard-of-hearing, and thus encourages an inclusive society.
Abstract:The rise of short-form videos on platforms like TikTok has brought new challenges in safeguarding young viewers from inappropriate content. Traditional moderation methods often fall short in handling the vast and rapidly changing landscape of user-generated videos, increasing the risk of children encountering harmful material. This paper introduces TikGuard, a transformer-based deep learning approach aimed at detecting and flagging content unsuitable for children on TikTok. By using a specially curated dataset, TikHarm, and leveraging advanced video classification techniques, TikGuard achieves an accuracy of 86.7%, showing a notable improvement over existing methods in similar contexts. While direct comparisons are limited by the uniqueness of the TikHarm dataset, TikGuard's performance highlights its potential in enhancing content moderation, contributing to a safer online experience for minors. This study underscores the effectiveness of transformer models in video classification and sets a foundation for future research in this area.
Abstract:This study thoroughly investigates how well deep learning models can recognize Arabic handwritten text for person biometric identification. It compares three advanced architectures -- ResNet50, MobileNetV2, and EfficientNetB7 -- using three widely recognized datasets: AHAWP, Khatt, and LAMIS-MSHD. Results show that EfficientNetB7 outperforms the others, achieving test accuracies of 98.57\%, 99.15\%, and 99.79\% on AHAWP, Khatt, and LAMIS-MSHD datasets, respectively. EfficientNetB7's exceptional performance is credited to its innovative techniques, including compound scaling, depth-wise separable convolutions, and squeeze-and-excitation blocks. These features allow the model to extract more abstract and distinctive features from handwritten text images. The study's findings hold significant implications for enhancing identity verification and authentication systems, highlighting the potential of deep learning in Arabic handwritten text recognition for person biometric identification.