Tsinghua University
Abstract:Proper moral beliefs are fundamental for language models, yet assessing these beliefs poses a significant challenge. This study introduces a novel three-module framework to evaluate the moral beliefs of four prominent large language models. Initially, we constructed a dataset containing 472 moral choice scenarios in Chinese, derived from moral words. The decision-making process of the models in these scenarios reveals their moral principle preferences. By ranking these moral choices, we discern the varying moral beliefs held by different language models. Additionally, through moral debates, we investigate the firmness of these models to their moral choices. Our findings indicate that English language models, namely ChatGPT and Gemini, closely mirror moral decisions of the sample of Chinese university students, demonstrating strong adherence to their choices and a preference for individualistic moral beliefs. In contrast, Chinese models such as Ernie and ChatGLM lean towards collectivist moral beliefs, exhibiting ambiguity in their moral choices and debates. This study also uncovers gender bias embedded within the moral beliefs of all examined language models. Our methodology offers an innovative means to assess moral beliefs in both artificial and human intelligence, facilitating a comparison of moral values across different cultures.
Abstract:Despite the remarkable advancements in Visual Question Answering (VQA), the challenge of mitigating the language bias introduced by textual information remains unresolved. Previous approaches capture language bias from a coarse-grained perspective. However, the finer-grained information within a sentence, such as context and keywords, can result in different biases. Due to the ignorance of fine-grained information, most existing methods fail to sufficiently capture language bias. In this paper, we propose a novel causal intervention training scheme named CIBi to eliminate language bias from a finer-grained perspective. Specifically, we divide the language bias into context bias and keyword bias. We employ causal intervention and contrastive learning to eliminate context bias and improve the multi-modal representation. Additionally, we design a new question-only branch based on counterfactual generation to distill and eliminate keyword bias. Experimental results illustrate that CIBi is applicable to various VQA models, yielding competitive performance.
Abstract:Scene sketching is to convert a scene into a simplified, abstract representation that captures the essential elements and composition of the original scene. It requires semantic understanding of the scene and consideration of different regions within the scene. Since scenes often contain diverse visual information across various regions, such as foreground objects, background elements, and spatial divisions, dealing with these different regions poses unique difficulties. In this paper, we define a sketch as some sets of Bezier curves. We optimize the different regions of input scene in multiple rounds. In each round of optimization, strokes sampled from the next region can seamlessly be integrated into the sketch generated in the previous round of optimization. We propose additional stroke initialization method to ensure the integrity of the scene and the convergence of optimization. A novel CLIP-Based Semantic loss and a VGG-Based Feature loss are utilized to guide our multi-round optimization. Extensive experimental results on the quality and quantity of the generated sketches confirm the effectiveness of our method.
Abstract:In this paper, we present a method, VectorPD, for converting a given human face image into a vector portrait sketch. VectorPD supports different levels of abstraction by simply controlling the number of strokes. Since vector graphics are composed of different shape primitives, it is challenging for rendering complex faces to accurately express facial details and structure. To address this, VectorPD employs a novel two-round optimization mechanism. We first initialize the strokes with facial keypoints, and generate a basic portrait sketch by a CLIP-based Semantic Loss. Then we complete the face structure through VGG-based Structure Loss, and propose a novel Crop-based Shadow Loss to enrich the shadow details of the sketch, achieving a visually pleasing portrait sketch. Quantitative and qualitative evaluations both demonstrate that the portrait sketches generated by VectorPD can produce better visual effects than existing state-of-the-art methods, maintaining as much fidelity as possible at different levels of abstraction.
Abstract:Multi-view learning methods often focus on improving decision accuracy, while neglecting the decision uncertainty, limiting their suitability for safety-critical applications. To mitigate this, researchers propose trusted multi-view learning methods that estimate classification probabilities and uncertainty by learning the class distributions for each instance. However, these methods assume that the data from each view can effectively differentiate all categories, ignoring the semantic vagueness phenomenon in real-world multi-view data. Our findings demonstrate that this phenomenon significantly suppresses the learning of view-specific evidence in existing methods. We propose a Consistent and Complementary-aware trusted Multi-view Learning (CCML) method to solve this problem. We first construct view opinions using evidential deep neural networks, which consist of belief mass vectors and uncertainty estimates. Next, we dynamically decouple the consistent and complementary evidence. The consistent evidence is derived from the shared portions across all views, while the complementary evidence is obtained by averaging the differing portions across all views. We ensure that the opinion constructed from the consistent evidence strictly aligns with the ground-truth category. For the opinion constructed from the complementary evidence, we allow it for potential vagueness in the evidence. We compare CCML with state-of-the-art baselines on one synthetic and six real-world datasets. The results validate the effectiveness of the dynamic evidence decoupling strategy and show that CCML significantly outperforms baselines on accuracy and reliability. The code is released at https://github.com/Lihong-Liu/CCML.
Abstract:Two self-supervised pretrained transformer-based segmentation models (SMIT and Swin UNETR) fine-tuned on a dataset of ovarian cancer CT images provided reasonably accurate delineations of the tumors in an independent test dataset. Tumors in the adnexa were segmented more accurately by both transformers (SMIT and Swin UNETR) than the omental implants. AI-assisted labeling performed on 72 out of 245 omental implants resulted in smaller manual editing effort of 39.55 mm compared to full manual correction of partial labels of 106.49 mm and resulted in overall improved accuracy performance. Both SMIT and Swin UNETR did not generate any false detection of omental metastases in the urinary bladder and relatively few false detections in the small bowel, with 2.16 cc on average for SMIT and 7.37 cc for Swin UNETR respectively.
Abstract:Quantitative susceptibility mapping (QSM) is an MRI phase-based post-processing technique to extract the distribution of tissue susceptibilities, demonstrating significant potential in studying neurological diseases. However, the ill-conditioned nature of dipole inversion makes QSM reconstruction from the tissue field prone to noise and artifacts. In this work, we propose a novel deep learning-based IR2QSM method for QSM reconstruction. It is designed by iterating four times of a reverse concatenations and middle recurrent modules enhanced U-net, which could dramatically improve the efficiency of latent feature utilization. Simulated and in vivo experiments were conducted to compare IR2QSM with several traditional algorithms (MEDI and iLSQR) and state-of-the-art deep learning methods (U-net, xQSM, and LPCNN). The results indicated that IR2QSM was able to obtain QSM images with significantly increased accuracy and mitigated artifacts over other methods. Particularly, IR2QSM demonstrated on average the best NRMSE (27.59%) in simulated experiments, which is 15.48%, 7.86%, 17.24%, 9.26%, and 29.13% lower than iLSQR, MEDI, U-net, xQSM, LPCNN, respectively, and led to improved QSM results with fewer artifacts for the in vivo data.
Abstract:Predicting unseen relations that cannot be observed during the training phase is a challenging task in relation extraction. Previous works have made progress by matching the semantics between input instances and label descriptions. However, fine-grained matching often requires laborious manual annotation, and rich interactions between instances and label descriptions come with significant computational overhead. In this work, we propose an efficient multi-grained matching approach that uses virtual entity matching to reduce manual annotation cost, and fuses coarse-grained recall and fine-grained classification for rich interactions with guaranteed inference speed. Experimental results show that our approach outperforms the previous State Of The Art (SOTA) methods, and achieves a balance between inference efficiency and prediction accuracy in zero-shot relation extraction tasks. Our code is available at https://github.com/longls777/EMMA.
Abstract:Recently, there have been attempts to integrate various speech processing tasks into a unified model. However, few previous works directly demonstrated that joint optimization of diverse tasks in multitask speech models has positive influence on the performance of individual tasks. In this paper we present a multitask speech model -- PolySpeech, which supports speech recognition, speech synthesis, and two speech classification tasks. PolySpeech takes multi-modal language model as its core structure and uses semantic representations as speech inputs. We introduce semantic speech embedding tokenization and speech reconstruction methods to PolySpeech, enabling efficient generation of high-quality speech for any given speaker. PolySpeech shows competitiveness across various tasks compared to single-task models. In our experiments, multitask optimization achieves performance comparable to single-task optimization and is especially beneficial for specific tasks.
Abstract:While nationality is a pivotal demographic element that enhances the performance of language models, it has received far less scrutiny regarding inherent biases. This study investigates nationality bias in ChatGPT (GPT-3.5), a large language model (LLM) designed for text generation. The research covers 195 countries, 4 temperature settings, and 3 distinct prompt types, generating 4,680 discourses about nationality descriptions in Chinese and English. Automated metrics were used to analyze the nationality bias, and expert annotators alongside ChatGPT itself evaluated the perceived bias. The results show that ChatGPT's generated discourses are predominantly positive, especially compared to its predecessor, GPT-2. However, when prompted with negative inclinations, it occasionally produces negative content. Despite ChatGPT considering its generated text as neutral, it shows consistent self-awareness about nationality bias when subjected to the same pair-wise comparison annotation framework used by human annotators. In conclusion, while ChatGPT's generated texts seem friendly and positive, they reflect the inherent nationality biases in the real world. This bias may vary across different language versions of ChatGPT, indicating diverse cultural perspectives. The study highlights the subtle and pervasive nature of biases within LLMs, emphasizing the need for further scrutiny.