Abstract:Mixup is a data augmentation technique that enhances model generalization by interpolating between data points using a mixing ratio $\lambda$ in the image domain. Recently, the concept of mixup has been adapted to the graph domain through node-centric interpolations. However, these approaches often fail to address the complexity of interconnected relationships, potentially damaging the graph's natural topology and undermining node interactions. Furthermore, current graph mixup methods employ a one-size-fits-all strategy with a randomly sampled $\lambda$ for all mixup pairs, ignoring the diverse needs of different pairs. This paper proposes an Adaptive Graph Mixup (AGMixup) framework for semi-supervised node classification. AGMixup introduces a subgraph-centric approach, which treats each subgraph similarly to how images are handled in Euclidean domains, thus facilitating a more natural integration of mixup into graph-based learning. We also propose an adaptive mechanism to tune the mixing ratio $\lambda$ for diverse mixup pairs, guided by the contextual similarity and uncertainty of the involved subgraphs. Extensive experiments across seven datasets on semi-supervised node classification benchmarks demonstrate AGMixup's superiority over state-of-the-art graph mixup methods. Source codes are available at \url{https://github.com/WeigangLu/AGMixup}.
Abstract:Multi-view learning methods often focus on improving decision accuracy, while neglecting the decision uncertainty, limiting their suitability for safety-critical applications. To mitigate this, researchers propose trusted multi-view learning methods that estimate classification probabilities and uncertainty by learning the class distributions for each instance. However, these methods assume that the data from each view can effectively differentiate all categories, ignoring the semantic vagueness phenomenon in real-world multi-view data. Our findings demonstrate that this phenomenon significantly suppresses the learning of view-specific evidence in existing methods. We propose a Consistent and Complementary-aware trusted Multi-view Learning (CCML) method to solve this problem. We first construct view opinions using evidential deep neural networks, which consist of belief mass vectors and uncertainty estimates. Next, we dynamically decouple the consistent and complementary evidence. The consistent evidence is derived from the shared portions across all views, while the complementary evidence is obtained by averaging the differing portions across all views. We ensure that the opinion constructed from the consistent evidence strictly aligns with the ground-truth category. For the opinion constructed from the complementary evidence, we allow it for potential vagueness in the evidence. We compare CCML with state-of-the-art baselines on one synthetic and six real-world datasets. The results validate the effectiveness of the dynamic evidence decoupling strategy and show that CCML significantly outperforms baselines on accuracy and reliability. The code is released at https://github.com/Lihong-Liu/CCML.
Abstract:Entity alignment (EA) is to identify equivalent entities across different knowledge graphs (KGs), which can help fuse these KGs into a more comprehensive one. Previous EA methods mainly focus on aligning a pair of KGs, and to the best of our knowledge, no existing EA method considers aligning multiple (more than two) KGs. To fill this research gap, in this work, we study a novel problem of aligning multiple KGs and propose an effective framework named MultiEA to solve the problem. First, we embed the entities of all the candidate KGs into a common feature space by a shared KG encoder. Then, we explore three alignment strategies to minimize the distances among pre-aligned entities. In particular, we propose an innovative inference enhancement technique to improve the alignment performance by incorporating high-order similarities. Finally, to verify the effectiveness of MultiEA, we construct two new real-world benchmark datasets and conduct extensive experiments on them. The results show that our MultiEA can effectively and efficiently align multiple KGs in a single pass.
Abstract:For a general-purpose robot to operate in reality, executing a broad range of instructions across various environments is imperative. Central to the reinforcement learning and planning for such robotic agents is a generalizable reward function. Recent advances in vision-language models, such as CLIP, have shown remarkable performance in the domain of deep learning, paving the way for open-domain visual recognition. However, collecting data on robots executing various language instructions across multiple environments remains a challenge. This paper aims to transfer video-language models with robust generalization into a generalizable language-conditioned reward function, only utilizing robot video data from a minimal amount of tasks in a singular environment. Unlike common robotic datasets used for training reward functions, human video-language datasets rarely contain trivial failure videos. To enhance the model's ability to distinguish between successful and failed robot executions, we cluster failure video features to enable the model to identify patterns within. For each cluster, we integrate a newly trained failure prompt into the text encoder to represent the corresponding failure mode. Our language-conditioned reward function shows outstanding generalization to new environments and new instructions for robot planning and reinforcement learning.
Abstract:Criminal case matching endeavors to determine the relevance between different criminal cases. Conventional methods predict the relevance solely based on instance-level semantic features and neglect the diverse legal factors (LFs), which are associated with diverse court judgments. Consequently, comprehensively representing a criminal case remains a challenge for these approaches. Moreover, extracting and utilizing these LFs for criminal case matching face two challenges: (1) the manual annotations of LFs rely heavily on specialized legal knowledge; (2) overlaps among LFs may potentially harm the model's performance. In this paper, we propose a two-stage framework named Diverse Legal Factor-enhanced Criminal Case Matching (DLF-CCM). Firstly, DLF-CCM employs a multi-task learning framework to pre-train an LF extraction network on a large-scale legal judgment prediction dataset. In stage two, DLF-CCM introduces an LF de-redundancy module to learn shared LF and exclusive LFs. Moreover, an entropy-weighted fusion strategy is introduced to dynamically fuse the multiple relevance generated by all LFs. Experimental results validate the effectiveness of DLF-CCM and show its significant improvements over competitive baselines. Code: https://github.com/jiezhao6/DLF-CCM.
Abstract:Text style transfer (TST) aims to vary the style polarity of text while preserving the semantic content. Although recent advancements have demonstrated remarkable progress in short TST, it remains a relatively straightforward task with limited practical applications. The more comprehensive long TST task presents two challenges: (1) existing methods encounter difficulties in accurately evaluating content attributes in multiple words, leading to content degradation; (2) the conventional vanilla style classifier loss encounters obstacles in maintaining consistent style across multiple generated sentences. In this paper, we propose a novel method SC2, where a multilayer Joint Style-Content Weighed (JSCW) module and a Style Consistency loss are designed to address the two issues. The JSCW simultaneously assesses the amounts of style and content attributes within a token, aiming to acquire a lossless content representation and thereby enhancing content preservation. The multiple JSCW layers further progressively refine content representations. We design a style consistency loss to ensure the generated multiple sentences consistently reflect the target style polarity. Moreover, we incorporate a denoising non-autoregressive decoder to accelerate the training. We conduct plentiful experiments and the results show significant improvements of SC2 over competitive baselines. Our code: https://github.com/jiezhao6/SC2.
Abstract:Graph Neural Networks (GNNs) have revolutionized graph-based machine learning, but their heavy computational demands pose challenges for latency-sensitive edge devices in practical industrial applications. In response, a new wave of methods, collectively known as GNN-to-MLP Knowledge Distillation, has emerged. They aim to transfer GNN-learned knowledge to a more efficient MLP student, which offers faster, resource-efficient inference while maintaining competitive performance compared to GNNs. However, these methods face significant challenges in situations with insufficient training data and incomplete test data, limiting their applicability in real-world applications. To address these challenges, we propose AdaGMLP, an AdaBoosting GNN-to-MLP Knowledge Distillation framework. It leverages an ensemble of diverse MLP students trained on different subsets of labeled nodes, addressing the issue of insufficient training data. Additionally, it incorporates a Node Alignment technique for robust predictions on test data with missing or incomplete features. Our experiments on seven benchmark datasets with different settings demonstrate that AdaGMLP outperforms existing G2M methods, making it suitable for a wide range of latency-sensitive real-world applications. We have submitted our code to the GitHub repository (https://github.com/WeigangLu/AdaGMLP-KDD24).
Abstract:Sequential recommender systems explore users' preferences and behavioral patterns from their historically generated data. Recently, researchers aim to improve sequential recommendation by utilizing massive user-generated multi-modal content, such as reviews, images, etc. This content often contains inevitable noise. Some studies attempt to reduce noise interference by suppressing cross-modal inconsistent information. However, they could potentially constrain the capturing of personalized user preferences. In addition, it is almost impossible to entirely eliminate noise in diverse user-generated multi-modal content. To solve these problems, we propose a trustworthy sequential recommendation method via noisy user-generated multi-modal content. Specifically, we explicitly capture the consistency and complementarity of user-generated multi-modal content to mitigate noise interference. We also achieve the modeling of the user's multi-modal sequential preferences. In addition, we design a trustworthy decision mechanism that integrates subjective user perspective and objective item perspective to dynamically evaluate the uncertainty of prediction results. Experimental evaluation on four widely-used datasets demonstrates the superior performance of our model compared to state-of-the-art methods. The code is released at https://github.com/FairyMeng/TrustSR.
Abstract:Multi-view learning methods often focus on improving decision accuracy while neglecting the decision uncertainty, which significantly restricts their applications in safety-critical applications. To address this issue, researchers propose trusted multi-view methods that learn the class distribution for each instance, enabling the estimation of classification probabilities and uncertainty. However, these methods heavily rely on high-quality ground-truth labels. This motivates us to delve into a new generalized trusted multi-view learning problem: how to develop a reliable multi-view learning model under the guidance of noisy labels? We propose a trusted multi-view noise refining method to solve this problem. We first construct view-opinions using evidential deep neural networks, which consist of belief mass vectors and uncertainty estimates. Subsequently, we design view-specific noise correlation matrices that transform the original opinions into noisy opinions aligned with the noisy labels. Considering label noises originating from low-quality data features and easily-confused classes, we ensure that the diagonal elements of these matrices are inversely proportional to the uncertainty, while incorporating class relations into the off-diagonal elements. Finally, we aggregate the noisy opinions and employ a generalized maximum likelihood loss on the aggregated opinion for model training, guided by the noisy labels. We empirically compare TMNR with state-of-the-art trusted multi-view learning and label noise learning baselines on 5 publicly available datasets. Experiment results show that TMNR outperforms baseline methods on accuracy, reliability and robustness. We promise to release the code and all datasets on Github and show the link here.
Abstract:Multi-view learning aims to combine multiple features to achieve more comprehensive descriptions of data. Most previous works assume that multiple views are strictly aligned. However, real-world multi-view data may contain low-quality conflictive instances, which show conflictive information in different views. Previous methods for this problem mainly focus on eliminating the conflictive data instances by removing them or replacing conflictive views. Nevertheless, real-world applications usually require making decisions for conflictive instances rather than only eliminating them. To solve this, we point out a new Reliable Conflictive Multi-view Learning (RCML) problem, which requires the model to provide decision results and attached reliabilities for conflictive multi-view data. We develop an Evidential Conflictive Multi-view Learning (ECML) method for this problem. ECML first learns view-specific evidence, which could be termed as the amount of support to each category collected from data. Then, we can construct view-specific opinions consisting of decision results and reliability. In the multi-view fusion stage, we propose a conflictive opinion aggregation strategy and theoretically prove this strategy can exactly model the relation of multi-view common and view-specific reliabilities. Experiments performed on 6 datasets verify the effectiveness of ECML.