Abstract:Monocular depth estimation has shown promise in general imaging tasks, aiding in localization and 3D reconstruction. While effective in various domains, its application to bronchoscopic images is hindered by the lack of labeled data, challenging the use of supervised learning methods. In this work, we propose a transfer learning framework that leverages synthetic data with depth labels for training and adapts domain knowledge for accurate depth estimation in real bronchoscope data. Our network demonstrates improved depth prediction on real footage using domain adaptation compared to training solely on synthetic data, validating our approach.
Abstract:Accurate and complete segmentation of airways in chest CT images is essential for the quantitative assessment of lung diseases and the facilitation of pulmonary interventional procedures. Although deep learning has led to significant advancements in medical image segmentation, maintaining airway continuity remains particularly challenging. This difficulty arises primarily from the small and dispersed nature of airway structures, as well as class imbalance in CT scans. To address these challenges, we designed a Multi-scale Nested Residual U-Net (MNR-UNet), incorporating multi-scale inputs and Residual Multi-scale Modules (RMM) into a nested residual framework to enhance information flow, effectively capturing the intricate details of small airways and mitigating gradient vanishing. Building on this, we developed a three-stage segmentation pipeline to optimize the training of the MNR-UNet. The first two stages prioritize high accuracy and sensitivity, while the third stage focuses on repairing airway breakages to balance topological completeness and correctness. To further address class imbalance, we introduced a weighted Breakage-Aware Loss (wBAL) to heighten focus on challenging samples, penalizing breakages and thereby extending the length of the airway tree. Additionally, we proposed a hierarchical evaluation framework to offer more clinically meaningful analysis. Validation on both in-house and public datasets demonstrates that our approach achieves superior performance in detecting more accurate airway voxels and identifying additional branches, significantly improving airway topological completeness. The code will be released publicly following the publication of the paper.
Abstract:Single-image depth estimation is essential for endoscopy tasks such as localization, reconstruction, and augmented reality. Most existing methods in surgical scenes focus on in-domain depth estimation, limiting their real-world applicability. This constraint stems from the scarcity and inferior labeling quality of medical data for training. In this work, we present EndoOmni, the first foundation model for zero-shot cross-domain depth estimation for endoscopy. To harness the potential of diverse training data, we refine the advanced self-learning paradigm that employs a teacher model to generate pseudo-labels, guiding a student model trained on large-scale labeled and unlabeled data. To address training disturbance caused by inherent noise in depth labels, we propose a robust training framework that leverages both depth labels and estimated confidence from the teacher model to jointly guide the student model training. Moreover, we propose a weighted scale-and-shift invariant loss to adaptively adjust learning weights based on label confidence, thus imposing learning bias towards cleaner label pixels while reducing the influence of highly noisy pixels. Experiments on zero-shot relative depth estimation show that our EndoOmni improves state-of-the-art methods in medical imaging for 41\% and existing foundation models for 25\% in terms of absolute relative error on specific dataset. Furthermore, our model provides strong initialization for fine-tuning to metric depth estimation, maintaining superior performance in both in-domain and out-of-domain scenarios. The source code will be publicly available.
Abstract:Entity alignment (EA) is to identify equivalent entities across different knowledge graphs (KGs), which can help fuse these KGs into a more comprehensive one. Previous EA methods mainly focus on aligning a pair of KGs, and to the best of our knowledge, no existing EA method considers aligning multiple (more than two) KGs. To fill this research gap, in this work, we study a novel problem of aligning multiple KGs and propose an effective framework named MultiEA to solve the problem. First, we embed the entities of all the candidate KGs into a common feature space by a shared KG encoder. Then, we explore three alignment strategies to minimize the distances among pre-aligned entities. In particular, we propose an innovative inference enhancement technique to improve the alignment performance by incorporating high-order similarities. Finally, to verify the effectiveness of MultiEA, we construct two new real-world benchmark datasets and conduct extensive experiments on them. The results show that our MultiEA can effectively and efficiently align multiple KGs in a single pass.
Abstract:Accurate bronchoscope localization is essential for pulmonary interventions, by providing six degrees of freedom (DOF) in airway navigation. However, the robustness of current vision-based methods is often compromised in clinical practice, and they struggle to perform in real-time and to generalize across cases unseen during training. To overcome these challenges, we propose a novel Probabilistic Airway Navigation System (PANS), leveraging Monte-Carlo method with pose hypotheses and likelihoods to achieve robust and real-time bronchoscope localization. Specifically, our PANS incorporates diverse visual representations (\textit{e.g.}, odometry and landmarks) by leveraging two key modules, including the Depth-based Motion Inference (DMI) and the Bronchial Semantic Analysis (BSA). To generate the pose hypotheses of bronchoscope for PANS, we devise the DMI to accurately propagate the estimation of pose hypotheses over time. Moreover, to estimate the accurate pose likelihood, we devise the BSA module by effectively distinguishing between similar bronchial regions in endoscopic images, along with a novel metric to assess the congruence between estimated depth maps and the segmented airway structure. Under this probabilistic formulation, our PANS is capable of achieving the 6-DOF bronchoscope localization with superior accuracy and robustness. Extensive experiments on the collected pulmonary intervention dataset comprising 10 clinical cases confirm the advantage of our PANS over state-of-the-arts, in terms of both robustness and generalization in localizing deeper airway branches and the efficiency of real-time inference. The proposed PANS reveals its potential to be a reliable tool in the operating room, promising to enhance the quality and safety of pulmonary interventions.
Abstract:Real-time 6 DOF localization of bronchoscopes is crucial for enhancing intervention quality. However, current vision-based technologies struggle to balance between generalization to unseen data and computational speed. In this study, we propose a Depth-based Dual-Loop framework for real-time Visually Navigated Bronchoscopy (DD-VNB) that can generalize across patient cases without the need of re-training. The DD-VNB framework integrates two key modules: depth estimation and dual-loop localization. To address the domain gap among patients, we propose a knowledge-embedded depth estimation network that maps endoscope frames to depth, ensuring generalization by eliminating patient-specific textures. The network embeds view synthesis knowledge into a cycle adversarial architecture for scale-constrained monocular depth estimation. For real-time performance, our localization module embeds a fast ego-motion estimation network into the loop of depth registration. The ego-motion inference network estimates the pose change of the bronchoscope in high frequency while depth registration against the pre-operative 3D model provides absolute pose periodically. Specifically, the relative pose changes are fed into the registration process as the initial guess to boost its accuracy and speed. Experiments on phantom and in-vivo data from patients demonstrate the effectiveness of our framework: 1) monocular depth estimation outperforms SOTA, 2) localization achieves an accuracy of Absolute Tracking Error (ATE) of 4.7 $\pm$ 3.17 mm in phantom and 6.49 $\pm$ 3.88 mm in patient data, 3) with a frame-rate approaching video capture speed, 4) without the necessity of case-wise network retraining. The framework's superior speed and accuracy demonstrate its promising clinical potential for real-time bronchoscopic navigation.
Abstract:This communication presents preliminary findings from comparing two recent chatbots, OpenAI's ChatGPT and Google's Bard, in the context of fire engineering by evaluating their responses in handling fire safety related queries. A diverse range of fire engineering questions and scenarios were created and examined, including structural fire design, fire prevention strategies, evacuation, building code compliance, and fire suppression systems (some of which resemble those commonly present in the Fire Protection exam (FPE)). The results reveal some key differences in the performance of the chatbots, with ChatGPT demonstrating a relatively superior performance. Then, this communication highlights the potential for chatbot technology to revolutionize fire engineering practices by providing instant access to critical information while outlining areas for further improvement and research. Evidently, and when it matures, this technology will likely be elemental to our engineers' practice and education.
Abstract:Localizing the bronchoscope in real time is essential for ensuring intervention quality. However, most existing methods struggle to balance between speed and generalization. To address these challenges, we present BronchoTrack, an innovative real-time framework for accurate branch-level localization, encompassing lumen detection, tracking, and airway association.To achieve real-time performance, we employ a benchmark lightweight detector for efficient lumen detection. We are the first to introduce multi-object tracking to bronchoscopic localization, mitigating temporal confusion in lumen identification caused by rapid bronchoscope movement and complex airway structures. To ensure generalization across patient cases, we propose a training-free detection-airway association method based on a semantic airway graph that encodes the hierarchy of bronchial tree structures.Experiments on nine patient datasets demonstrate BronchoTrack's localization accuracy of 85.64 \%, while accessing up to the 4th generation of airways.Furthermore, we tested BronchoTrack in an in-vivo animal study using a porcine model, where it successfully localized the bronchoscope into the 8th generation airway.Experimental evaluation underscores BronchoTrack's real-time performance in both satisfying accuracy and generalization, demonstrating its potential for clinical applications.
Abstract:As a single-track mobile platform, bikebot (i.e., bicycle-based robot) has attractive navigation capability to pass through narrow, off-road terrain with high-speed and high-energy efficiency. However, running crossing step-like obstacles creates challenges for intrinsically unstable, underactuated bikebots. This paper presents a novel autonomous bikebot control with assistive leg actuation to navigate crossing obstacles. The proposed design integrates the external/internal convertible-based control with leg-assisted impulse control. The leg-terrain interaction generates assistive impulsive torques to help maintain the navigation and balance capability when running across obstacles. The control performance is analyzed and guaranteed. The experimental results confirm that under the control design, the bikebot can smoothly run crossing multiple step-like obstacles with height more than one third of the wheel radius. The comparison results demonstrate the superior performance than those under only the velocity and steering control without leg assistive impulsive actuation.