Abstract:Wireless sensing has become a fundamental enabler for intelligent environments, supporting applications such as human detection, activity recognition, localization, and vital sign monitoring. Despite rapid advances, existing datasets and pipelines remain fragmented across sensing modalities, hindering fair comparison, transfer, and reproducibility. We propose the Sensing Dataset Protocol (SDP), a protocol-level specification and benchmark framework for large-scale wireless sensing. SDP defines how heterogeneous wireless signals are mapped into a unified perception data-block schema through lightweight synchronization, frequency-time alignment, and resampling, while a Canonical Polyadic-Alternating Least Squares (CP-ALS) pooling stage provides a task-agnostic representation that preserves multipath, spectral, and temporal structures. Built upon this protocol, a unified benchmark is established for detection, recognition, and vital-sign estimation with consistent preprocessing, training, and evaluation. Experiments under the cross-user split demonstrate that SDP significantly reduces variance (approximately 88%) across seeds while maintaining competitive accuracy and latency, confirming its value as a reproducible foundation for multi-modal and multitask sensing research.
Abstract:This paper provides a fundamental characterization of the discrete ambiguity functions (AFs) of random communication waveforms under arbitrary orthonormal modulation with random constellation symbols, which serve as a key metric for evaluating the delay-Doppler sensing performance in future ISAC applications. A unified analytical framework is developed for two types of AFs, namely the discrete periodic AF (DP-AF) and the fast-slow time AF (FST-AF), where the latter may be seen as a small-Doppler approximation of the DP-AF. By analyzing the expectation of squared AFs, we derive exact closed-form expressions for both the expected sidelobe level (ESL) and the expected integrated sidelobe level (EISL) under the DP-AF and FST-AF formulations. For the DP-AF, we prove that the normalized EISL is identical for all orthogonal waveforms. To gain structural insights, we introduce a matrix representation based on the finite Weyl-Heisenberg (WH) group, where each delay-Doppler shift corresponds to a WH operator acting on the ISAC signal. This WH-group viewpoint yields sharp geometric constraints on the lowest sidelobes: The minimum ESL can only occur along a one-dimensional cut or over a set of widely dispersed delay-Doppler bins. Consequently, no waveform can attain the minimum ESL over any compact two-dimensional region, leading to a no-optimality (no-go) result under the DP-AF framework. For the FST-AF, the closed-form ESL and EISL expressions reveal a constellation-dependent regime governed by its kurtosis: The OFDM modulation achieves the minimum ESL for sub-Gaussian constellations, whereas the OTFS waveform becomes optimal for super-Gaussian constellations. Finally, four representative waveforms, namely, SC, OFDM, OTFS, and AFDM, are examined under both frameworks, and all theoretical results are verified through numerical examples.




Abstract:Generative Artificial Intelligence (GenAI) has made significant advancements in fields such as computer vision (CV) and natural language processing (NLP), demonstrating its capability to synthesize high-fidelity data and improve generalization. Recently, there has been growing interest in integrating GenAI into wireless sensing systems. By leveraging generative techniques such as data augmentation, domain adaptation, and denoising, wireless sensing applications, including device localization, human activity recognition, and environmental monitoring, can be significantly improved. This survey investigates the convergence of GenAI and wireless sensing from two complementary perspectives. First, we explore how GenAI can be integrated into wireless sensing pipelines, focusing on two modes of integration: as a plugin to augment task-specific models and as a solver to directly address sensing tasks. Second, we analyze the characteristics of mainstream generative models, such as Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and diffusion models, and discuss their applicability and unique advantages across various wireless sensing tasks. We further identify key challenges in applying GenAI to wireless sensing and outline a future direction toward a wireless foundation model: a unified, pre-trained design capable of scalable, adaptable, and efficient signal understanding across diverse sensing tasks.




Abstract:This letter studies the sensing-assisted channel prediction for a multi-antenna orthogonal frequency division multiplexing (OFDM) system operating in realistic and complex wireless environments. In this system,an integrated sensing and communication (ISAC) transmitter leverages the mono-static sensing capability to facilitate the prediction of its bi-static communication channel, by exploiting the fact that the sensing and communication channels share the same physical environment involving shared scatterers. Specifically, we propose a novel large language model (LLM)-based channel prediction approach,which adapts pre-trained text-based LLM to handle the complex-matrix-form channel state information (CSI) data. This approach utilizes the LLM's strong ability to capture the intricate spatiotemporal relationships between the multi-path sensing and communication channels, and thus efficiently predicts upcoming communication CSI based on historical communication and sensing CSI data. Experimental results show that the proposed LLM-based approach significantly outperforms conventional deep learning-based methods and the benchmark scheme without sensing assistance.
Abstract:Wireless signal-based human sensing technologies, such as WiFi, millimeter-wave (mmWave) radar, and Radio Frequency Identification (RFID), enable the detection and interpretation of human presence, posture, and activities, thereby providing critical support for applications in public security, healthcare, and smart environments. These technologies exhibit notable advantages due to their non-contact operation and environmental adaptability; however, existing systems often fail to leverage the textual information inherent in datasets. To address this, we propose an innovative text-enhanced wireless sensing framework, WiTalk, that seamlessly integrates semantic knowledge through three hierarchical prompt strategies-label-only, brief description, and detailed action description-without requiring architectural modifications or incurring additional data costs. We rigorously validate this framework across three public benchmark datasets: XRF55 for human action recognition (HAR), and WiFiTAL and XRFV2 for WiFi temporal action localization (TAL). Experimental results demonstrate significant performance improvements: on XRF55, accuracy for WiFi, RFID, and mmWave increases by 3.9%, 2.59%, and 0.46%, respectively; on WiFiTAL, the average performance of WiFiTAD improves by 4.98%; and on XRFV2, the mean average precision gains across various methods range from 4.02% to 13.68%. Our codes have been included in https://github.com/yangzhenkui/WiTalk.
Abstract:Wi-Fi sensing has emerged as a transformative technology that leverages ubiquitous wireless signals to enable a variety of applications ranging from activity and gesture recognition to indoor localization and health monitoring. However, the inherent dependency of Wi-Fi signals on environmental conditions introduces significant generalization challenges,variations in surroundings, human positions, and orientations often lead to inconsistent signal features, impeding robust action recognition. In this survey, we review over 200 studies on Wi-Fi sensing generalization, categorizing them along the entire sensing pipeline: device deployment, signal processing, feature learning, and model deployment. We systematically analyze state-of-the-art techniques, which are employed to mitigate the adverse effects of environmental variability. Moreover, we provide a comprehensive overview of open-source datasets such as Widar3.0, XRF55, and XRFv2, highlighting their unique characteristics and applicability for multimodal fusion and cross-modal tasks. Finally, we discuss emerging research directions, such as multimodal approaches and the integration of large language models,to inspire future advancements in this rapidly evolving field. Our survey aims to serve as a valuable resource for researchers, offering insights into current methodologies, available datasets, and promising avenues for further investigation.
Abstract:Given the prospects of the low-altitude economy (LAE) and the popularity of unmanned aerial vehicles (UAVs), there are increasing demands on monitoring flying objects at low altitude in wide urban areas. In this work, the widely deployed long-term evolution (LTE) base station (BS) is exploited to illuminate UAVs in bistatic trajectory tracking. Specifically, a passive sensing receiver with two digital antenna arrays is proposed and developed to capture both the line-of-sight (LoS) signal and the scattered signal off a target UAV. From their cross ambiguity function, the bistatic range, Doppler shift and angle-of-arrival (AoA) of the target UAV can be detected in a sequence of time slots. In order to address missed detections and false alarms of passive sensing, a multi-target tracking framework is adopted to track the trajectory of the target UAV. It is demonstrated by experiments that the proposed UAV tracking system can achieve a meter-level accuracy.




Abstract:Wireless sensing has made significant progress in tasks ranging from action recognition, vital sign estimation, pose estimation, etc. After over a decade of work, wireless sensing currently stands at the tipping point transitioning from proof-of-concept systems to the large-scale deployment. We envision a future service scenario where wireless sensing service providers distribute sensing models to users. During usage, users might request new sensing capabilities. For example, if someone is away from home on a business trip or vacation for an extended period, they may want a new sensing capability that can detect falls in elderly parents or grandparents and promptly alert them. In this paper, we propose CCS (continuous customized service), enabling model updates on users' local computing resources without data transmission to the service providers. To address the issue of catastrophic forgetting in model updates where updating model parameters to implement new capabilities leads to the loss of existing capabilities we design knowledge distillation and weight alignment modules. These modules enable the sensing model to acquire new capabilities while retaining the existing ones. We conducted extensive experiments on the large-scale XRF55 dataset across Wi-Fi, millimeter-wave radar, and RFID modalities to simulate scenarios where four users sequentially introduced new customized demands. The results affirm that CCS excels in continuous model services across all the above wireless modalities, significantly outperforming existing approaches like OneFi.
Abstract:Along with AIGC shines in CV and NLP, its potential in the wireless domain has also emerged in recent years. Yet, existing RF-oriented generative solutions are ill-suited for generating high-quality, time-series RF data due to limited representation capabilities. In this work, inspired by the stellar achievements of the diffusion model in CV and NLP, we adapt it to the RF domain and propose RF-Diffusion. To accommodate the unique characteristics of RF signals, we first introduce a novel Time-Frequency Diffusion theory to enhance the original diffusion model, enabling it to tap into the information within the time, frequency, and complex-valued domains of RF signals. On this basis, we propose a Hierarchical Diffusion Transformer to translate the theory into a practical generative DNN through elaborated design spanning network architecture, functional block, and complex-valued operator, making RF-Diffusion a versatile solution to generate diverse, high-quality, and time-series RF data. Performance comparison with three prevalent generative models demonstrates the RF-Diffusion's superior performance in synthesizing Wi-Fi and FMCW signals. We also showcase the versatility of RF-Diffusion in boosting Wi-Fi sensing systems and performing channel estimation in 5G networks.




Abstract:This paper introduces a cooperative sensing framework designed for integrated sensing and communication cellular networks. The framework comprises one base station (BS) functioning as the sensing transmitter, while several nearby BSs act as sensing receivers. The primary objective is to facilitate cooperative target localization by enabling each receiver to share specific information with a fusion center (FC) over a limited capacity backhaul link. To achieve this goal, we propose an advanced cooperative sensing design that enhances the communication process between the receivers and the FC. Each receiver independently estimates the time delay and the reflecting coefficient associated with the reflected path from the target. Subsequently, each receiver transmits the estimated values and the received signal samples centered around the estimated time delay to the FC. To efficiently quantize the signal samples, a Karhunen-Lo\`eve Transform coding scheme is employed. Furthermore, an optimization problem is formulated to allocate backhaul resources for quantizing different samples, improving target localization. Numerical results validate the effectiveness of our proposed advanced design and demonstrate its superiority over a baseline design, where only the locally estimated values are transmitted from each receiver to the FC.