Abstract:Along with AIGC shines in CV and NLP, its potential in the wireless domain has also emerged in recent years. Yet, existing RF-oriented generative solutions are ill-suited for generating high-quality, time-series RF data due to limited representation capabilities. In this work, inspired by the stellar achievements of the diffusion model in CV and NLP, we adapt it to the RF domain and propose RF-Diffusion. To accommodate the unique characteristics of RF signals, we first introduce a novel Time-Frequency Diffusion theory to enhance the original diffusion model, enabling it to tap into the information within the time, frequency, and complex-valued domains of RF signals. On this basis, we propose a Hierarchical Diffusion Transformer to translate the theory into a practical generative DNN through elaborated design spanning network architecture, functional block, and complex-valued operator, making RF-Diffusion a versatile solution to generate diverse, high-quality, and time-series RF data. Performance comparison with three prevalent generative models demonstrates the RF-Diffusion's superior performance in synthesizing Wi-Fi and FMCW signals. We also showcase the versatility of RF-Diffusion in boosting Wi-Fi sensing systems and performing channel estimation in 5G networks.
Abstract:With the rapid development of wireless communication technology, wireless access points (AP) and internet of things (IoT) devices have been widely deployed in our surroundings. Various types of wireless signals (e.g., Wi-Fi, LoRa, LTE) are filling out our living and working spaces. Previous researches reveal the fact that radio waves are modulated by the spatial structure during the propagation process (e.g., reflection, diffraction, and scattering) and superimposed on the receiver. This observation allows us to reconstruct the surrounding environment based on received wireless signals, called "wireless sensing". Wireless sensing is an emerging technology that enables a wide range of applications, such as gesture recognition for human-computer interaction, vital signs monitoring for health care, and intrusion detection for security management. Compared with other sensing paradigms, such as vision-based and IMU-based sensing, wireless sensing solutions have unique advantages such as high coverage, pervasiveness, low cost, and robustness under adverse light and texture scenarios. Besides, wireless sensing solutions are generally lightweight in terms of both computation overhead and device size. This tutorial takes Wi-Fi sensing as an example. It introduces both the theoretical principles and the code implementation of data collection, signal processing, features extraction, and model design. In addition, this tutorial highlights state-of-the-art deep learning models (e.g., CNN, RNN, and adversarial learning models) and their applications in wireless sensing systems. We hope this tutorial will help people in other research fields to break into wireless sensing research and learn more about its theories, designs, and implementation skills, promoting prosperity in the wireless sensing research field.