This paper introduces a cooperative sensing framework designed for integrated sensing and communication cellular networks. The framework comprises one base station (BS) functioning as the sensing transmitter, while several nearby BSs act as sensing receivers. The primary objective is to facilitate cooperative target localization by enabling each receiver to share specific information with a fusion center (FC) over a limited capacity backhaul link. To achieve this goal, we propose an advanced cooperative sensing design that enhances the communication process between the receivers and the FC. Each receiver independently estimates the time delay and the reflecting coefficient associated with the reflected path from the target. Subsequently, each receiver transmits the estimated values and the received signal samples centered around the estimated time delay to the FC. To efficiently quantize the signal samples, a Karhunen-Lo\`eve Transform coding scheme is employed. Furthermore, an optimization problem is formulated to allocate backhaul resources for quantizing different samples, improving target localization. Numerical results validate the effectiveness of our proposed advanced design and demonstrate its superiority over a baseline design, where only the locally estimated values are transmitted from each receiver to the FC.