Abstract:Integration of radar, wireless communications, and spectrum sensing is being investigated for 6G with an increased spectral efficiency. Microwave photonics (MWP), a technique that combines microwave engineering and photonic technology to take advantage of the wide bandwidth offered by photonics for microwave signal generation and processing is considered an effective solution for the implementation of the integration. In this paper, an MWP-assisted joint radar, wireless communications, and spectrum sensing (JRCSS) system that enables precise perception of the surrounding physical and electromagnetic environments while maintaining high-speed data communication is proposed and demonstrated. Communication signals and frequency-sweep signals are merged in the optical domain to achieve high-speed radar ranging and imaging, high-data-rate wireless communications, and wideband spectrum sensing. In an experimental demonstration, a JRCSS system supporting radar ranging with a measurement error within $\pm$ 4 cm, two-dimensional imaging with a resolution of 25 $\times$ 24.7 mm, wireless communications with a data rate of 2 Gbaud, and spectrum sensing with a frequency measurement error within $\pm$ 10 MHz in a 6-GHz bandwidth, is demonstrated.
Abstract:Deep learning plays an important role in modern agriculture, especially in plant pathology using leaf images where convolutional neural networks (CNN) are attracting a lot of attention. While numerous reviews have explored the applications of deep learning within this research domain, there remains a notable absence of an empirical study to offer insightful comparisons due to the employment of varied datasets in the evaluation. Furthermore, a majority of these approaches tend to address the problem as a singular prediction task, overlooking the multifaceted nature of predicting various aspects of plant species and disease types. Lastly, there is an evident need for a more profound consideration of the semantic relationships that underlie plant species and disease types. In this paper, we start our study by surveying current deep learning approaches for plant identification and disease classification. We categorise the approaches into multi-model, multi-label, multi-output, and multi-task, in which different backbone CNNs can be employed. Furthermore, based on the survey of existing approaches in plant pathology and the study of available approaches in machine learning, we propose a new model named Generalised Stacking Multi-output CNN (GSMo-CNN). To investigate the effectiveness of different backbone CNNs and learning approaches, we conduct an intensive experiment on three benchmark datasets Plant Village, Plant Leaves, and PlantDoc. The experimental results demonstrate that InceptionV3 can be a good choice for a backbone CNN as its performance is better than AlexNet, VGG16, ResNet101, EfficientNet, MobileNet, and a custom CNN developed by us. Interestingly, empirical results support the hypothesis that using a single model can be comparable or better than using two models. Finally, we show that the proposed GSMo-CNN achieves state-of-the-art performance on three benchmark datasets.
Abstract:The growing demand for sustainable development brings a series of information technologies to help agriculture production. Especially, the emergence of machine learning applications, a branch of artificial intelligence, has shown multiple breakthroughs which can enhance and revolutionize plant pathology approaches. In recent years, machine learning has been adopted for leaf disease classification in both academic research and industrial applications. Therefore, it is enormously beneficial for researchers, engineers, managers, and entrepreneurs to have a comprehensive view about the recent development of machine learning technologies and applications for leaf disease detection. This study will provide a survey in different aspects of the topic including data, techniques, and applications. The paper will start with publicly available datasets. After that, we summarize common machine learning techniques, including traditional (shallow) learning, deep learning, and augmented learning. Finally, we discuss related applications. This paper would provide useful resources for future study and application of machine learning for smart agriculture in general and leaf disease classification in particular.
Abstract:This letter considers a multi-access mobile edge computing (MEC) network consisting of multiple users, multiple base stations, and a malicious eavesdropper. Specifically, the users adopt the partial offloading strategy by partitioning the computation task into several parts. One is executed locally and the others are securely offloaded to multiple MEC servers integrated into the base stations by leveraging the physical layer security to combat the eavesdropping. We jointly optimize power allocation, task partition, subcarrier allocation, and computation resource to maximize the secrecy offloading rate of the users, subject to communication and computation resource constraints. Numerical results demonstrate that our proposed scheme can respectively improve the secrecy offloading rate 1.11%--1.39% and 15.05%--17.35% (versus the increase of tasks' latency requirements), and 1.30%--1.75% and 6.08%--9.22% (versus the increase of the maximum transmit power) compared with the two benchmarks. Moreover, it further emphasizes the necessity of conducting computation offloading over multiple MEC servers.