Abstract:Despite ongoing efforts to defend neural classifiers from adversarial attacks, they remain vulnerable, especially to unseen attacks. In contrast, humans are difficult to be cheated by subtle manipulations, since we make judgments only based on essential factors. Inspired by this observation, we attempt to model label generation with essential label-causative factors and incorporate label-non-causative factors to assist data generation. For an adversarial example, we aim to discriminate the perturbations as non-causative factors and make predictions only based on the label-causative factors. Concretely, we propose a casual diffusion model (CausalDiff) that adapts diffusion models for conditional data generation and disentangles the two types of casual factors by learning towards a novel casual information bottleneck objective. Empirically, CausalDiff has significantly outperformed state-of-the-art defense methods on various unseen attacks, achieving an average robustness of 86.39% (+4.01%) on CIFAR-10, 56.25% (+3.13%) on CIFAR-100, and 82.62% (+4.93%) on GTSRB (German Traffic Sign Recognition Benchmark).
Abstract:Unbiased Learning to Rank (ULTR) aims to leverage biased implicit user feedback (e.g., click) to optimize an unbiased ranking model. The effectiveness of the existing ULTR methods has primarily been validated on synthetic datasets. However, their performance on real-world click data remains unclear. Recently, Baidu released a large publicly available dataset of their web search logs. Subsequently, the NTCIR-17 ULTRE-2 task released a subset dataset extracted from it. We conduct experiments on commonly used or effective ULTR methods on this subset to determine whether they maintain their effectiveness. In this paper, we propose a Contextual Dual Learning Algorithm with Listwise Distillation (CDLA-LD) to simultaneously address both position bias and contextual bias. We utilize a listwise-input ranking model to obtain reconstructed feature vectors incorporating local contextual information and employ the Dual Learning Algorithm (DLA) method to jointly train this ranking model and a propensity model to address position bias. As this ranking model learns the interaction information within the documents list of the training set, to enhance the ranking model's generalization ability, we additionally train a pointwise-input ranking model to learn the listwise-input ranking model's capability for relevance judgment in a listwise manner. Extensive experiments and analysis confirm the effectiveness of our approach.
Abstract:Large language models (LLMs) have been found to produce hallucinations when the question exceeds their internal knowledge boundaries. A reliable model should have a clear perception of its knowledge boundaries, providing correct answers within its scope and refusing to answer when it lacks knowledge. Existing research on LLMs' perception of their knowledge boundaries typically uses either the probability of the generated tokens or the verbalized confidence as the model's confidence in its response. However, these studies overlook the differences and connections between the two. In this paper, we conduct a comprehensive analysis and comparison of LLMs' probabilistic perception and verbalized perception of their factual knowledge boundaries. First, we investigate the pros and cons of these two perceptions. Then, we study how they change under questions of varying frequencies. Finally, we measure the correlation between LLMs' probabilistic confidence and verbalized confidence. Experimental results show that 1) LLMs' probabilistic perception is generally more accurate than verbalized perception but requires an in-domain validation set to adjust the confidence threshold. 2) Both perceptions perform better on less frequent questions. 3) It is challenging for LLMs to accurately express their internal confidence in natural language.
Abstract:As Large Language Models (LLMs) become an important way of information seeking, there have been increasing concerns about the unethical content LLMs may generate. In this paper, we conduct a rigorous evaluation of LLMs' implicit bias towards certain groups by attacking them with carefully crafted instructions to elicit biased responses. Our attack methodology is inspired by psychometric principles in cognitive and social psychology. We propose three attack approaches, i.e., Disguise, Deception, and Teaching, based on which we built evaluation datasets for four common bias types. Each prompt attack has bilingual versions. Extensive evaluation of representative LLMs shows that 1) all three attack methods work effectively, especially the Deception attacks; 2) GLM-3 performs the best in defending our attacks, compared to GPT-3.5 and GPT-4; 3) LLMs could output content of other bias types when being taught with one type of bias. Our methodology provides a rigorous and effective way of evaluating LLMs' implicit bias and will benefit the assessments of LLMs' potential ethical risks.
Abstract:Utility and topical relevance are critical measures in information retrieval (IR), reflecting system and user perspectives, respectively. While topical relevance has long been emphasized, utility is a higher standard of relevance and is more useful for facilitating downstream tasks, e.g., in Retrieval-Augmented Generation (RAG). When we incorporate utility judgments into RAG, we realize that the topical relevance, utility, and answering in RAG are closely related to the three types of relevance that Schutz discussed from a philosophical perspective. They are topical relevance, interpretational relevance, and motivational relevance, respectively. Inspired by the dynamic iterations of the three types of relevance, we propose an Iterative utiliTy judgmEnt fraMework (ITEM) to promote each step of the cycle of RAG. We conducted extensive experiments on multi-grade passage retrieval and factoid question-answering datasets (i.e., TREC DL, WebAP, and NQ). Experimental results demonstrate significant improvements in utility judgments, ranking of topical relevance, and answer generation upon representative baselines, including multiple single-shot utility judging approaches. Our code and benchmark can be found at https://anonymous.4open.science/r/ITEM-B486/.
Abstract:Since commonsense information has been recorded significantly less frequently than its existence, language models pre-trained by text generation have difficulty to learn sufficient commonsense knowledge. Several studies have leveraged text retrieval to augment the models' commonsense ability. Unlike text, images capture commonsense information inherently but little effort has been paid to effectively utilize them. In this work, we propose a novel Multi-mOdal REtrieval (MORE) augmentation framework, to leverage both text and images to enhance the commonsense ability of language models. Extensive experiments on the Common-Gen task have demonstrated the efficacy of MORE based on the pre-trained models of both single and multiple modalities.
Abstract:Large Language Models (LLMs) have been found to have difficulty knowing they do not possess certain knowledge and tend to provide specious answers in such cases. Retrieval Augmentation (RA) has been extensively studied to mitigate LLMs' hallucinations. However, due to the extra overhead and unassured quality of retrieval, it may not be optimal to conduct RA all the time. A straightforward idea is to only conduct retrieval when LLMs are uncertain about a question. This motivates us to enhance the LLMs' ability to perceive their knowledge boundaries to help RA. In this paper, we first quantitatively measure LLMs' such ability and confirm their overconfidence. Then, we study how LLMs' certainty about a question correlates with their dependence on external retrieved information. We propose several methods to enhance LLMs' perception of knowledge boundaries and show that they are effective in reducing overconfidence. Additionally, equipped with these methods, LLMs can achieve comparable or even better performance of RA with much fewer retrieval calls.
Abstract:Multi-aspect dense retrieval aims to incorporate aspect information (e.g., brand and category) into dual encoders to facilitate relevance matching. As an early and representative multi-aspect dense retriever, MADRAL learns several extra aspect embeddings and fuses the explicit aspects with an implicit aspect "OTHER" for final representation. MADRAL was evaluated on proprietary data and its code was not released, making it challenging to validate its effectiveness on other datasets. We failed to reproduce its effectiveness on the public MA-Amazon data, motivating us to probe the reasons and re-examine its components. We propose several component alternatives for comparisons, including replacing "OTHER" with "CLS" and representing aspects with the first several content tokens. Through extensive experiments, we confirm that learning "OTHER" from scratch in aspect fusion is harmful. In contrast, our proposed variants can greatly enhance the retrieval performance. Our research not only sheds light on the limitations of MADRAL but also provides valuable insights for future studies on more powerful multi-aspect dense retrieval models. Code will be released at: https://github.com/sunxiaojie99/Reproducibility-for-MADRAL.
Abstract:Dense retrieval methods have been mostly focused on unstructured text and less attention has been drawn to structured data with various aspects, e.g., products with aspects such as category and brand. Recent work has proposed two approaches to incorporate the aspect information into item representations for effective retrieval by predicting the values associated with the item aspects. Despite their efficacy, they treat the values as isolated classes (e.g., "Smart Homes", "Home, Garden & Tools", and "Beauty & Health") and ignore their fine-grained semantic relation. Furthermore, they either enforce the learning of aspects into the CLS token, which could confuse it from its designated use for representing the entire content semantics, or learn extra aspect embeddings only with the value prediction objective, which could be insufficient especially when there are no annotated values for an item aspect. Aware of these limitations, we propose a MUlti-granulaRity-aware Aspect Learning model (MURAL) for multi-aspect dense retrieval. It leverages aspect information across various granularities to capture both coarse and fine-grained semantic relations between values. Moreover, MURAL incorporates separate aspect embeddings as input to transformer encoders so that the masked language model objective can assist implicit aspect learning even without aspect-value annotations. Extensive experiments on two real-world datasets of products and mini-programs show that MURAL outperforms state-of-the-art baselines significantly.
Abstract:The first-stage retrieval aims to retrieve a subset of candidate documents from a huge collection both effectively and efficiently. Since various matching patterns can exist between queries and relevant documents, previous work tries to combine multiple retrieval models to find as many relevant results as possible. The constructed ensembles, whether learned independently or jointly, do not care which component model is more suitable to an instance during training. Thus, they cannot fully exploit the capabilities of different types of retrieval models in identifying diverse relevance patterns. Motivated by this observation, in this paper, we propose a Mixture-of-Experts (MoE) model consisting of representative matching experts and a novel competitive learning mechanism to let the experts develop and enhance their expertise during training. Specifically, our MoE model shares the bottom layers to learn common semantic representations and uses differently structured upper layers to represent various types of retrieval experts. Our competitive learning mechanism has two stages: (1) a standardized learning stage to train the experts equally to develop their capabilities to conduct relevance matching; (2) a specialized learning stage where the experts compete with each other on every training instance and get rewards and updates according to their performance to enhance their expertise on certain types of samples. Experimental results on three retrieval benchmark datasets show that our method significantly outperforms the state-of-the-art baselines.