Abstract:Unbiased Learning to Rank (ULTR) aims to leverage biased implicit user feedback (e.g., click) to optimize an unbiased ranking model. The effectiveness of the existing ULTR methods has primarily been validated on synthetic datasets. However, their performance on real-world click data remains unclear. Recently, Baidu released a large publicly available dataset of their web search logs. Subsequently, the NTCIR-17 ULTRE-2 task released a subset dataset extracted from it. We conduct experiments on commonly used or effective ULTR methods on this subset to determine whether they maintain their effectiveness. In this paper, we propose a Contextual Dual Learning Algorithm with Listwise Distillation (CDLA-LD) to simultaneously address both position bias and contextual bias. We utilize a listwise-input ranking model to obtain reconstructed feature vectors incorporating local contextual information and employ the Dual Learning Algorithm (DLA) method to jointly train this ranking model and a propensity model to address position bias. As this ranking model learns the interaction information within the documents list of the training set, to enhance the ranking model's generalization ability, we additionally train a pointwise-input ranking model to learn the listwise-input ranking model's capability for relevance judgment in a listwise manner. Extensive experiments and analysis confirm the effectiveness of our approach.
Abstract:Large language models (LLMs) have been found to produce hallucinations when the question exceeds their internal knowledge boundaries. A reliable model should have a clear perception of its knowledge boundaries, providing correct answers within its scope and refusing to answer when it lacks knowledge. Existing research on LLMs' perception of their knowledge boundaries typically uses either the probability of the generated tokens or the verbalized confidence as the model's confidence in its response. However, these studies overlook the differences and connections between the two. In this paper, we conduct a comprehensive analysis and comparison of LLMs' probabilistic perception and verbalized perception of their factual knowledge boundaries. First, we investigate the pros and cons of these two perceptions. Then, we study how they change under questions of varying frequencies. Finally, we measure the correlation between LLMs' probabilistic confidence and verbalized confidence. Experimental results show that 1) LLMs' probabilistic perception is generally more accurate than verbalized perception but requires an in-domain validation set to adjust the confidence threshold. 2) Both perceptions perform better on less frequent questions. 3) It is challenging for LLMs to accurately express their internal confidence in natural language.
Abstract:The Chinese academy of sciences Information Retrieval team (CIR) has participated in the NTCIR-17 ULTRE-2 task. This paper describes our approaches and reports our results on the ULTRE-2 task. We recognize the issue of false negatives in the Baidu search data in this competition is very severe, much more severe than position bias. Hence, we adopt the Dual Learning Algorithm (DLA) to address the position bias and use it as an auxiliary model to study how to alleviate the false negative issue. We approach the problem from two perspectives: 1) correcting the labels for non-clicked items by a relevance judgment model trained from DLA, and learn a new ranker that is initialized from DLA; 2) including random documents as true negatives and documents that have partial matching as hard negatives. Both methods can enhance the model performance and our best method has achieved nDCG@10 of 0.5355, which is 2.66% better than the best score from the organizer.
Abstract:An effective ranking model usually requires a large amount of training data to learn the relevance between documents and queries. User clicks are often used as training data since they can indicate relevance and are cheap to collect, but they contain substantial bias and noise. There has been some work on mitigating various types of bias in simulated user clicks to train effective learning-to-rank models based on multiple features. However, how to effectively use such methods on large-scale pre-trained models with real-world click data is unknown. To alleviate the data bias in the real world, we incorporate heuristic-based features, refine the ranking objective, add random negatives, and calibrate the propensity calculation in the pre-training stage. Then we fine-tune several pre-trained models and train an ensemble model to aggregate all the predictions from various pre-trained models with human-annotation data in the fine-tuning stage. Our approaches won 3rd place in the "Pre-training for Web Search" task in WSDM Cup 2023 and are 22.6% better than the 4th-ranked team.
Abstract:Unbiased learning to rank (ULTR) aims to mitigate various biases existing in user clicks, such as position bias, trust bias, presentation bias, and learn an effective ranker. In this paper, we introduce our winning approach for the "Unbiased Learning to Rank" task in WSDM Cup 2023. We find that the provided data is severely biased so neural models trained directly with the top 10 results with click information are unsatisfactory. So we extract multiple heuristic-based features for multi-fields of the results, adjust the click labels, add true negatives, and re-weight the samples during model training. Since the propensities learned by existing ULTR methods are not decreasing w.r.t. positions, we also calibrate the propensities according to the click ratios and ensemble the models trained in two different ways. Our method won the 3rd prize with a DCG@10 score of 9.80, which is 1.1% worse than the 2nd and 25.3% higher than the 4th.