Abstract:The capabilities of recent large language models (LLMs) to generate high-quality content indistinguishable by humans from human-written texts rises many concerns regarding their misuse. Previous research has shown that LLMs can be effectively misused for generating disinformation news articles following predefined narratives. Their capabilities to generate personalized (in various aspects) content have also been evaluated and mostly found usable. However, a combination of personalization and disinformation abilities of LLMs has not been comprehensively studied yet. Such a dangerous combination should trigger integrated safety filters of the LLMs, if there are some. This study fills this gap by evaluation of vulnerabilities of recent open and closed LLMs, and their willingness to generate personalized disinformation news articles in English. We further explore whether the LLMs can reliably meta-evaluate the personalization quality and whether the personalization affects the generated-texts detectability. Our results demonstrate the need for stronger safety-filters and disclaimers, as those are not properly functioning in most of the evaluated LLMs. Additionally, our study revealed that the personalization actually reduces the safety-filter activations; thus effectively functioning as a jailbreak. Such behavior must be urgently addressed by LLM developers and service providers.
Abstract:In the current era of social media and generative AI, an ability to automatically assess the credibility of online social media content is of tremendous importance. Credibility assessment is fundamentally based on aggregating credibility signals, which refer to small units of information, such as content factuality, bias, or a presence of persuasion techniques, into an overall credibility score. Credibility signals provide a more granular, more easily explainable and widely utilizable information in contrast to currently predominant fake news detection, which utilizes various (mostly latent) features. A growing body of research on automatic credibility assessment and detection of credibility signals can be characterized as highly fragmented and lacking mutual interconnections. This issue is even more prominent due to a lack of an up-to-date overview of research works on automatic credibility assessment. In this survey, we provide such systematic and comprehensive literature review of 175 research papers while focusing on textual credibility signals and Natural Language Processing (NLP), which undergoes a significant advancement due to Large Language Models (LLMs). While positioning the NLP research into the context of other multidisciplinary research works, we tackle with approaches for credibility assessment as well as with 9 categories of credibility signals (we provide a thorough analysis for 3 of them, namely: 1) factuality, subjectivity and bias, 2) persuasion techniques and logical fallacies, and 3) claims and veracity). Following the description of the existing methods, datasets and tools, we identify future challenges and opportunities, while paying a specific attention to recent rapid development of generative AI.
Abstract:Recent LLMs are able to generate high-quality multilingual texts, indistinguishable for humans from authentic human-written ones. Research in machine-generated text detection is however mostly focused on the English language and longer texts, such as news articles, scientific papers or student essays. Social-media texts are usually much shorter and often feature informal language, grammatical errors, or distinct linguistic items (e.g., emoticons, hashtags). There is a gap in studying the ability of existing methods in detection of such texts, reflected also in the lack of existing multilingual benchmark datasets. To fill this gap we propose the first multilingual (22 languages) and multi-platform (5 social media platforms) dataset for benchmarking machine-generated text detection in the social-media domain, called MultiSocial. It contains 472,097 texts, of which about 58k are human-written and approximately the same amount is generated by each of 7 multilingual LLMs. We use this benchmark to compare existing detection methods in zero-shot as well as fine-tuned form. Our results indicate that the fine-tuned detectors have no problem to be trained on social-media texts and that the platform selection for training matters.
Abstract:High-quality text generation capability of latest Large Language Models (LLMs) causes concerns about their misuse (e.g., in massive generation/spread of disinformation). Machine-generated text (MGT) detection is important to cope with such threats. However, it is susceptible to authorship obfuscation (AO) methods, such as paraphrasing, which can cause MGTs to evade detection. So far, this was evaluated only in monolingual settings. Thus, the susceptibility of recently proposed multilingual detectors is still unknown. We fill this gap by comprehensively benchmarking the performance of 10 well-known AO methods, attacking 37 MGT detection methods against MGTs in 11 languages (i.e., 10 $\times$ 37 $\times$ 11 = 4,070 combinations). We also evaluate the effect of data augmentation on adversarial robustness using obfuscated texts. The results indicate that all tested AO methods can cause detection evasion in all tested languages, where homoglyph attacks are especially successful.
Abstract:Automated disinformation generation is often listed as one of the risks of large language models (LLMs). The theoretical ability to flood the information space with disinformation content might have dramatic consequences for democratic societies around the world. This paper presents a comprehensive study of the disinformation capabilities of the current generation of LLMs to generate false news articles in English language. In our study, we evaluated the capabilities of 10 LLMs using 20 disinformation narratives. We evaluated several aspects of the LLMs: how well they are at generating news articles, how strongly they tend to agree or disagree with the disinformation narratives, how often they generate safety warnings, etc. We also evaluated the abilities of detection models to detect these articles as LLM-generated. We conclude that LLMs are able to generate convincing news articles that agree with dangerous disinformation narratives.
Abstract:In the realm of text manipulation and linguistic transformation, the question of authorship has always been a subject of fascination and philosophical inquiry. Much like the \textbf{Ship of Theseus paradox}, which ponders whether a ship remains the same when each of its original planks is replaced, our research delves into an intriguing question: \textit{Does a text retain its original authorship when it undergoes numerous paraphrasing iterations?} Specifically, since Large Language Models (LLMs) have demonstrated remarkable proficiency in the generation of both original content and the modification of human-authored texts, a pivotal question emerges concerning the determination of authorship in instances where LLMs or similar paraphrasing tools are employed to rephrase the text. This inquiry revolves around \textit{whether authorship should be attributed to the original human author or the AI-powered tool, given the tool's independent capacity to produce text that closely resembles human-generated content.} Therefore, we embark on a philosophical voyage through the seas of language and authorship to unravel this intricate puzzle.
Abstract:This study compares the performance of (1) fine-tuned models and (2) extremely large language models on the task of check-worthy claim detection. For the purpose of the comparison we composed a multilingual and multi-topical dataset comprising texts of various sources and styles. Building on this, we performed a benchmark analysis to determine the most general multilingual and multi-topical claim detector. We chose three state-of-the-art models in the check-worthy claim detection task and fine-tuned them. Furthermore, we selected three state-of-the-art extremely large language models without any fine-tuning. We made modifications to the models to adapt them for multilingual settings and through extensive experimentation and evaluation. We assessed the performance of all the models in terms of accuracy, recall, and F1-score in in-domain and cross-domain scenarios. Our results demonstrate that despite the technological progress in the area of natural language processing, the models fine-tuned for the task of check-worthy claim detection still outperform the zero-shot approaches in a cross-domain settings.
Abstract:There is a lack of research into capabilities of recent LLMs to generate convincing text in languages other than English and into performance of detectors of machine-generated text in multilingual settings. This is also reflected in the available benchmarks which lack authentic texts in languages other than English and predominantly cover older generators. To fill this gap, we introduce MULTITuDE, a novel benchmarking dataset for multilingual machine-generated text detection comprising of 74,081 authentic and machine-generated texts in 11 languages (ar, ca, cs, de, en, es, nl, pt, ru, uk, and zh) generated by 8 multilingual LLMs. Using this benchmark, we compare the performance of zero-shot (statistical and black-box) and fine-tuned detectors. Considering the multilinguality, we evaluate 1) how these detectors generalize to unseen languages (linguistically similar as well as dissimilar) and unseen LLMs and 2) whether the detectors improve their performance when trained on multiple languages.
Abstract:Fact-checkers are often hampered by the sheer amount of online content that needs to be fact-checked. NLP can help them by retrieving already existing fact-checks relevant to the content being investigated. This paper introduces a new multilingual dataset -- MultiClaim -- for previously fact-checked claim retrieval. We collected 28k posts in 27 languages from social media, 206k fact-checks in 39 languages written by professional fact-checkers, as well as 31k connections between these two groups. This is the most extensive and the most linguistically diverse dataset of this kind to date. We evaluated how different unsupervised methods fare on this dataset and its various dimensions. We show that evaluating such a diverse dataset has its complexities and proper care needs to be taken before interpreting the results. We also evaluated a supervised fine-tuning approach, improving upon the unsupervised method significantly.
Abstract:Eye tracking in recommender systems can provide an additional source of implicit feedback, while helping to evaluate other sources of feedback. In this study, we use eye tracking data to inform a collaborative filtering model for movie recommendation providing an improvement over the click-based implementations and additionally analyze the area of interest (AOI) duration as related to the known information of click data and movies seen previously, showing AOI information consistently coincides with these items of interest.