Abstract:Disinformation, irrespective of domain or language, aims to deceive or manipulate public opinion, typically through employing advanced persuasion techniques. Qualitative and quantitative research on the weaponisation of persuasion techniques in disinformation has been mostly topic-specific (e.g., COVID-19) with limited cross-domain studies, resulting in a lack of comprehensive understanding of these strategies. This study employs a state-of-the-art persuasion technique classifier to conduct a large-scale, multi-domain analysis of the role of 16 persuasion techniques in disinformation narratives. It shows how different persuasion techniques are employed disproportionately in different disinformation domains. We also include a detailed case study on climate change disinformation, highlighting how linguistic, psychological, and cultural factors shape the adaptation of persuasion strategies to fit unique thematic contexts.
Abstract:In the current era of social media and generative AI, an ability to automatically assess the credibility of online social media content is of tremendous importance. Credibility assessment is fundamentally based on aggregating credibility signals, which refer to small units of information, such as content factuality, bias, or a presence of persuasion techniques, into an overall credibility score. Credibility signals provide a more granular, more easily explainable and widely utilizable information in contrast to currently predominant fake news detection, which utilizes various (mostly latent) features. A growing body of research on automatic credibility assessment and detection of credibility signals can be characterized as highly fragmented and lacking mutual interconnections. This issue is even more prominent due to a lack of an up-to-date overview of research works on automatic credibility assessment. In this survey, we provide such systematic and comprehensive literature review of 175 research papers while focusing on textual credibility signals and Natural Language Processing (NLP), which undergoes a significant advancement due to Large Language Models (LLMs). While positioning the NLP research into the context of other multidisciplinary research works, we tackle with approaches for credibility assessment as well as with 9 categories of credibility signals (we provide a thorough analysis for 3 of them, namely: 1) factuality, subjectivity and bias, 2) persuasion techniques and logical fallacies, and 3) claims and veracity). Following the description of the existing methods, datasets and tools, we identify future challenges and opportunities, while paying a specific attention to recent rapid development of generative AI.
Abstract:This work introduces EUvsDisinfo, a multilingual dataset of trustworthy and disinformation articles related to pro-Kremlin themes. It is sourced directly from the debunk articles written by experts leading the EUvsDisinfo project. Our dataset is the largest to-date resource in terms of the overall number of articles and distinct languages. It also provides the largest topical and temporal coverage. Using this dataset, we investigate the dissemination of pro-Kremlin disinformation across different languages, uncovering language-specific patterns targeting specific disinformation topics. We further analyse the evolution of topic distribution over an eight-year period, noting a significant surge in disinformation content before the full-scale invasion of Ukraine in 2022. Lastly, we demonstrate the dataset's applicability in training models to effectively distinguish between disinformation and trustworthy content in multilingual settings.
Abstract:Credibility signals represent a wide range of heuristics that are typically used by journalists and fact-checkers to assess the veracity of online content. Automating the task of credibility signal extraction, however, is very challenging as it requires high-accuracy signal-specific extractors to be trained, while there are currently no sufficiently large datasets annotated with all credibility signals. This paper investigates whether large language models (LLMs) can be prompted effectively with a set of 18 credibility signals to produce weak labels for each signal. We then aggregate these potentially noisy labels using weak supervision in order to predict content veracity. We demonstrate that our approach, which combines zero-shot LLM credibility signal labeling and weak supervision, outperforms state-of-the-art classifiers on two misinformation datasets without using any ground-truth labels for training. We also analyse the contribution of the individual credibility signals towards predicting content veracity, which provides new valuable insights into their role in misinformation detection.
Abstract:Adapters and Low-Rank Adaptation (LoRA) are parameter-efficient fine-tuning techniques designed to make the training of language models more efficient. Previous results demonstrated that these methods can even improve performance on some classification tasks. This paper complements the existing research by investigating how these techniques influence the classification performance and computation costs compared to full fine-tuning when applied to multilingual text classification tasks (genre, framing, and persuasion techniques detection; with different input lengths, number of predicted classes and classification difficulty), some of which have limited training data. In addition, we conduct in-depth analyses of their efficacy across different training scenarios (training on the original multilingual data; on the translations into English; and on a subset of English-only data) and different languages. Our findings provide valuable insights into the applicability of the parameter-efficient fine-tuning techniques, particularly to complex multilingual and multilabel classification tasks.
Abstract:This paper describes our approach for SemEval-2023 Task 3: Detecting the category, the framing, and the persuasion techniques in online news in a multi-lingual setup. For Subtask 1 (News Genre), we propose an ensemble of fully trained and adapter mBERT models which was ranked joint-first for German, and had the highest mean rank of multi-language teams. For Subtask 2 (Framing), we achieved first place in 3 languages, and the best average rank across all the languages, by using two separate ensembles: a monolingual RoBERTa-MUPPETLARGE and an ensemble of XLM-RoBERTaLARGE with adapters and task adaptive pretraining. For Subtask 3 (Persuasion Techniques), we train a monolingual RoBERTa-Base model for English and a multilingual mBERT model for the remaining languages, which achieved top 10 for all languages, including 2nd for English. For each subtask, we compare monolingual and multilingual approaches, and consider class imbalance techniques.