Abstract:The rapid proliferation of large language models (LLMs) has increased the volume of machine-generated texts (MGTs) and blurred text authorship in various domains. However, most existing MGT benchmarks include single-author texts (human-written and machine-generated). This conventional design fails to capture more practical multi-author scenarios, where the user refines the LLM response for natural flow, coherence, and factual correctness. Our paper introduces the Benchmark of Expert-edited Machine-generated Outputs (Beemo), which includes 6.5k texts written by humans, generated by ten instruction-finetuned LLMs, and edited by experts for various use cases, ranging from creative writing to summarization. Beemo additionally comprises 13.1k machine-generated and LLM-edited texts, allowing for diverse MGT detection evaluation across various edit types. We document Beemo's creation protocol and present the results of benchmarking 33 configurations of MGT detectors in different experimental setups. We find that expert-based editing evades MGT detection, while LLM-edited texts are unlikely to be recognized as human-written. Beemo and all materials are publicly available.
Abstract:Recent literature has highlighted potential risks to academic integrity associated with large language models (LLMs), as they can memorize parts of training instances and reproduce them in the generated texts without proper attribution. In addition, given their capabilities in generating high-quality texts, plagiarists can exploit LLMs to generate realistic paraphrases or summaries indistinguishable from original work. In response to possible malicious use of LLMs in plagiarism, we introduce PlagBench, a comprehensive dataset consisting of 46.5K synthetic plagiarism cases generated using three instruction-tuned LLMs across three writing domains. The quality of PlagBench is ensured through fine-grained automatic evaluation for each type of plagiarism, complemented by human annotation. We then leverage our proposed dataset to evaluate the plagiarism detection performance of five modern LLMs and three specialized plagiarism checkers. Our findings reveal that GPT-3.5 tends to generates paraphrases and summaries of higher quality compared to Llama2 and GPT-4. Despite LLMs' weak performance in summary plagiarism identification, they can surpass current commercial plagiarism detectors. Overall, our results highlight the potential of LLMs to serve as robust plagiarism detection tools.
Abstract:High-quality text generation capability of latest Large Language Models (LLMs) causes concerns about their misuse (e.g., in massive generation/spread of disinformation). Machine-generated text (MGT) detection is important to cope with such threats. However, it is susceptible to authorship obfuscation (AO) methods, such as paraphrasing, which can cause MGTs to evade detection. So far, this was evaluated only in monolingual settings. Thus, the susceptibility of recently proposed multilingual detectors is still unknown. We fill this gap by comprehensively benchmarking the performance of 10 well-known AO methods, attacking 37 MGT detection methods against MGTs in 11 languages (i.e., 10 $\times$ 37 $\times$ 11 = 4,070 combinations). We also evaluate the effect of data augmentation on adversarial robustness using obfuscated texts. The results indicate that all tested AO methods can cause detection evasion in all tested languages, where homoglyph attacks are especially successful.
Abstract:In the realm of text manipulation and linguistic transformation, the question of authorship has always been a subject of fascination and philosophical inquiry. Much like the \textbf{Ship of Theseus paradox}, which ponders whether a ship remains the same when each of its original planks is replaced, our research delves into an intriguing question: \textit{Does a text retain its original authorship when it undergoes numerous paraphrasing iterations?} Specifically, since Large Language Models (LLMs) have demonstrated remarkable proficiency in the generation of both original content and the modification of human-authored texts, a pivotal question emerges concerning the determination of authorship in instances where LLMs or similar paraphrasing tools are employed to rephrase the text. This inquiry revolves around \textit{whether authorship should be attributed to the original human author or the AI-powered tool, given the tool's independent capacity to produce text that closely resembles human-generated content.} Therefore, we embark on a philosophical voyage through the seas of language and authorship to unravel this intricate puzzle.
Abstract:Authorship Analysis, also known as stylometry, has been an essential aspect of Natural Language Processing (NLP) for a long time. Likewise, the recent advancement of Large Language Models (LLMs) has made authorship analysis increasingly crucial for distinguishing between human-written and AI-generated texts. However, these authorship analysis tasks have primarily been focused on written texts, not considering spoken texts. Thus, we introduce the largest benchmark for spoken texts - HANSEN (Human ANd ai Spoken tExt beNchmark). HANSEN encompasses meticulous curation of existing speech datasets accompanied by transcripts, alongside the creation of novel AI-generated spoken text datasets. Together, it comprises 17 human datasets, and AI-generated spoken texts created using 3 prominent LLMs: ChatGPT, PaLM2, and Vicuna13B. To evaluate and demonstrate the utility of HANSEN, we perform Authorship Attribution (AA) & Author Verification (AV) on human-spoken datasets and conducted Human vs. AI spoken text detection using state-of-the-art (SOTA) models. While SOTA methods, such as, character ngram or Transformer-based model, exhibit similar AA & AV performance in human-spoken datasets compared to written ones, there is much room for improvement in AI-generated spoken text detection. The HANSEN benchmark is available at: https://huggingface.co/datasets/HANSEN-REPO/HANSEN.
Abstract:Recent ubiquity and disruptive impacts of large language models (LLMs) have raised concerns about their potential to be misused (.i.e, generating large-scale harmful and misleading content). To combat this emerging risk of LLMs, we propose a novel "Fighting Fire with Fire" (F3) strategy that harnesses modern LLMs' generative and emergent reasoning capabilities to counter human-written and LLM-generated disinformation. First, we leverage GPT-3.5-turbo to synthesize authentic and deceptive LLM-generated content through paraphrase-based and perturbation-based prefix-style prompts, respectively. Second, we apply zero-shot in-context semantic reasoning techniques with cloze-style prompts to discern genuine from deceptive posts and news articles. In our extensive experiments, we observe GPT-3.5-turbo's zero-shot superiority for both in-distribution and out-of-distribution datasets, where GPT-3.5-turbo consistently achieved accuracy at 68-72%, unlike the decline observed in previous customized and fine-tuned disinformation detectors. Our codebase and dataset are available at https://github.com/mickeymst/F3.
Abstract:There is a lack of research into capabilities of recent LLMs to generate convincing text in languages other than English and into performance of detectors of machine-generated text in multilingual settings. This is also reflected in the available benchmarks which lack authentic texts in languages other than English and predominantly cover older generators. To fill this gap, we introduce MULTITuDE, a novel benchmarking dataset for multilingual machine-generated text detection comprising of 74,081 authentic and machine-generated texts in 11 languages (ar, ca, cs, de, en, es, nl, pt, ru, uk, and zh) generated by 8 multilingual LLMs. Using this benchmark, we compare the performance of zero-shot (statistical and black-box) and fine-tuned detectors. Considering the multilinguality, we evaluate 1) how these detectors generalize to unseen languages (linguistically similar as well as dissimilar) and unseen LLMs and 2) whether the detectors improve their performance when trained on multiple languages.
Abstract:The Uniform Information Density principle posits that humans prefer to spread information evenly during language production. In this work, we examine if the UID principle can help capture differences between Large Language Models (LLMs) and human-generated text. We propose GPT-who, the first psycholinguistically-aware multi-class domain-agnostic statistical-based detector. This detector employs UID-based features to model the unique statistical signature of each LLM and human author for accurate authorship attribution. We evaluate our method using 4 large-scale benchmark datasets and find that GPT-who outperforms state-of-the-art detectors (both statistical- & non-statistical-based) such as GLTR, GPTZero, OpenAI detector, and ZeroGPT by over $20$% across domains. In addition to superior performance, it is computationally inexpensive and utilizes an interpretable representation of text articles. We present the largest analysis of the UID-based representations of human and machine-generated texts (over 400k articles) to demonstrate how authors distribute information differently, and in ways that enable their detection using an off-the-shelf LM without any fine-tuning. We find that GPT-who can distinguish texts generated by very sophisticated LLMs, even when the overlying text is indiscernible.
Abstract:Recent advances in Large Language Models (LLMs) have enabled the generation of open-ended high-quality texts, that are non-trivial to distinguish from human-written texts. We refer to such LLM-generated texts as \emph{deepfake texts}. There are currently over 11K text generation models in the huggingface model repo. As such, users with malicious intent can easily use these open-sourced LLMs to generate harmful texts and misinformation at scale. To mitigate this problem, a computational method to determine if a given text is a deepfake text or not is desired--i.e., Turing Test (TT). In particular, in this work, we investigate the more general version of the problem, known as \emph{Authorship Attribution (AA)}, in a multi-class setting--i.e., not only determining if a given text is a deepfake text or not but also being able to pinpoint which LLM is the author. We propose \textbf{TopRoBERTa} to improve existing AA solutions by capturing more linguistic patterns in deepfake texts by including a Topological Data Analysis (TDA) layer in the RoBERTa model. We show the benefits of having a TDA layer when dealing with noisy, imbalanced, and heterogeneous datasets, by extracting TDA features from the reshaped $pooled\_output$ of RoBERTa as input. We use RoBERTa to capture contextual representations (i.e., semantic and syntactic linguistic features), while using TDA to capture the shape and structure of data (i.e., linguistic structures). Finally, \textbf{TopRoBERTa}, outperforms the vanilla RoBERTa in 2/3 datasets, achieving up to 7\% increase in Macro F1 score.
Abstract:In recent years, Natural Language Generation (NLG) techniques in AI (e.g., T5, GPT-3, ChatGPT) have shown a massive improvement and are now capable of generating human-like long coherent texts at scale, yielding so-called deepfake texts. This advancement, despite their benefits, can also cause security and privacy issues (e.g., plagiarism, identity obfuscation, disinformation attack). As such, it has become critically important to develop effective, practical, and scalable solutions to differentiate deepfake texts from human-written texts. Toward this challenge, in this work, we investigate how factors such as skill levels and collaborations impact how humans identify deepfake texts, studying three research questions: (1) do collaborative teams detect deepfake texts better than individuals? (2) do expert humans detect deepfake texts better than non-expert humans? (3) what are the factors that maximize the detection performance of humans? We implement these questions on two platforms: (1) non-expert humans or asynchronous teams on Amazon Mechanical Turk (AMT) and (2) expert humans or synchronous teams on the Upwork. By analyzing the detection performance and the factors that affected performance, some of our key findings are: (1) expert humans detect deepfake texts significantly better than non-expert humans, (2) synchronous teams on the Upwork detect deepfake texts significantly better than individuals, while asynchronous teams on the AMT detect deepfake texts weakly better than individuals, and (3) among various error categories, examining coherence and consistency in texts is useful in detecting deepfake texts. In conclusion, our work could inform the design of future tools/framework to improve collaborative human detection of deepfake texts.