Abstract:The scaling law is a notable property of neural network models and has significantly propelled the development of large language models. Scaling laws hold great promise in guiding model design and resource allocation. Recent research increasingly shows that scaling laws are not limited to NLP tasks or Transformer architectures; they also apply to domains such as recommendation. However, there is still a lack of literature on scaling law research in online advertisement retrieval systems. This may be because 1) identifying the scaling law for resource cost and online revenue is often expensive in both time and training resources for large-scale industrial applications, and 2) varying settings for different systems prevent the scaling law from being applied across various scenarios. To address these issues, we propose a lightweight paradigm to identify the scaling law of online revenue and machine cost for a certain online advertisement retrieval scenario with a low experimental cost. Specifically, we focus on a sole factor (FLOPs) and propose an offline metric named R/R* that exhibits a high linear correlation with online revenue for retrieval models. We estimate the machine cost offline via a simulation algorithm. Thus, we can transform most online experiments into low-cost offline experiments. We conduct comprehensive experiments to verify the effectiveness of our proposed metric R/R* and to identify the scaling law in the online advertisement retrieval system of Kuaishou. With the scaling law, we demonstrate practical applications for ROI-constrained model designing and multi-scenario resource allocation in Kuaishou advertising system. To the best of our knowledge, this is the first work to study the scaling laws for online advertisement retrieval of real-world systems, showing great potential for scaling law in advertising system optimization.
Abstract:Ensuring verifiable and interpretable safety of deep reinforcement learning (DRL) is crucial for its deployment in real-world applications. Existing approaches like verification-in-the-loop training, however, face challenges such as difficulty in deployment, inefficient training, lack of interpretability, and suboptimal performance in property satisfaction and reward performance. In this work, we propose a novel verification-driven interpretation-in-the-loop framework Reintrainer to develop trustworthy DRL models, which are guaranteed to meet the expected constraint properties. Specifically, in each iteration, this framework measures the gap between the on-training model and predefined properties using formal verification, interprets the contribution of each input feature to the model's output, and then generates the training strategy derived from the on-the-fly measure results, until all predefined properties are proven. Additionally, the low reusability of existing verifiers and interpreters motivates us to develop Reinfier, a general and fundamental tool within Reintrainer for DRL verification and interpretation. Reinfier features breakpoints searching and verification-driven interpretation, associated with a concise constraint-encoding language DRLP. Evaluations demonstrate that Reintrainer outperforms the state-of-the-art on six public benchmarks in both performance and property guarantees. Our framework can be accessed at https://github.com/Kurayuri/Reinfier.
Abstract:Graph Structure Learning (GSL) focuses on capturing intrinsic dependencies and interactions among nodes in graph-structured data by generating novel graph structures. Graph Neural Networks (GNNs) have emerged as promising GSL solutions, utilizing recursive message passing to encode node-wise inter-dependencies. However, many existing GSL methods heavily depend on explicit graph structural information as supervision signals, leaving them susceptible to challenges such as data noise and sparsity. In this work, we propose GraphEdit, an approach that leverages large language models (LLMs) to learn complex node relationships in graph-structured data. By enhancing the reasoning capabilities of LLMs through instruction-tuning over graph structures, we aim to overcome the limitations associated with explicit graph structural information and enhance the reliability of graph structure learning. Our approach not only effectively denoises noisy connections but also identifies node-wise dependencies from a global perspective, providing a comprehensive understanding of the graph structure. We conduct extensive experiments on multiple benchmark datasets to demonstrate the effectiveness and robustness of GraphEdit across various settings. We have made our model implementation available at: https://github.com/HKUDS/GraphEdit.
Abstract:In recent years, spectral graph neural networks, characterized by polynomial filters, have garnered increasing attention and have achieved remarkable performance in tasks such as node classification. These models typically assume that eigenvalues for the normalized Laplacian matrix are distinct from each other, thus expecting a polynomial filter to have a high fitting ability. However, this paper empirically observes that normalized Laplacian matrices frequently possess repeated eigenvalues. Moreover, we theoretically establish that the number of distinguishable eigenvalues plays a pivotal role in determining the expressive power of spectral graph neural networks. In light of this observation, we propose an eigenvalue correction strategy that can free polynomial filters from the constraints of repeated eigenvalue inputs. Concretely, the proposed eigenvalue correction strategy enhances the uniform distribution of eigenvalues, thus mitigating repeated eigenvalues, and improving the fitting capacity and expressive power of polynomial filters. Extensive experimental results on both synthetic and real-world datasets demonstrate the superiority of our method.
Abstract:Massive captured face images are stored in the database for the identification of individuals. However, the stored images can be observed intentionally or unintentionally by data managers, which is not at the will of individuals and may cause privacy violations. Existing protection works only slightly change the visual content of the face while maintaining the utility of identification, making it susceptible to the inference of the true identity by human vision. In this paper, we propose an identity hider that enables significant visual content change for human vision while preserving high identifiability for face recognizers. Firstly, the identity hider generates a virtual face with new visual content by manipulating the latent space in StyleGAN2. In particular, the virtual face has the same irrelevant attributes as the original face, e.g., pose and expression. Secondly, the visual content of the virtual face is transferred into the original face and then the background is replaced with the original one. In addition, the identity hider has strong transferability, which ensures an arbitrary face recognizer can achieve satisfactory accuracy. Adequate experiments show that the proposed identity hider achieves excellent performance on privacy protection and identifiability preservation.
Abstract:Convolutional neural networks (CNNs) have demonstrated superior performance in super-resolution (SR). However, most CNN-based SR methods neglect the different importance among feature channels or fail to take full advantage of the hierarchical features. To address these issues, this paper presents a novel recursive unit. Firstly, at the beginning of each unit, we adopt a compact channel attention mechanism to adaptively recalibrate the channel importance of input features. Then, the multi-level features, rather than only deep-level features, are extracted and fused. Additionally, we find that it will force our model to learn more details by using the learnable upsampling method (i.e., transposed convolution) only on residual branch (instead of using it both on residual branch and identity branch) while using the bicubic interpolation on the other branch. Analytic experiments show that our method achieves competitive results compared with the state-of-the-art methods and maintains faster speed as well.