Abstract:The rapid and accurate detection of biochemical compositions in fish is a crucial real-world task that facilitates optimal utilization and extraction of high-value products in the seafood industry. Raman spectroscopy provides a promising solution for quickly and non-destructively analyzing the biochemical composition of fish by associating Raman spectra with biochemical reference data using machine learning regression models. This paper investigates different regression models to address this task and proposes a new design of Convolutional Neural Networks (CNNs) for jointly predicting water, protein, and lipids yield. To the best of our knowledge, we are the first to conduct a successful study employing CNNs to analyze the biochemical composition of fish based on a very small Raman spectroscopic dataset. Our approach combines a tailored CNN architecture with the comprehensive data preparation procedure, effectively mitigating the challenges posed by extreme data scarcity. The results demonstrate that our CNN can significantly outperform two state-of-the-art CNN models and multiple traditional machine learning models, paving the way for accurate and automated analysis of fish biochemical composition.
Abstract:One of the most significant challenges of EEG-based emotion recognition is the cross-subject EEG variations, leading to poor performance and generalizability. This paper proposes a novel EEG-based emotion recognition model called the domain adversarial graph attention model (DAGAM). The basic idea is to generate a graph to model multichannel EEG signals using biological topology. Graph theory can topologically describe and analyze relationships and mutual dependency between channels of EEG. Then, unlike other graph convolutional networks, self-attention pooling is applied to benefit salient EEG feature extraction from the graph, which effectively improves the performance. Finally, after graph pooling, the domain adversarial based on the graph is employed to identify and handle EEG variation across subjects, efficiently reaching good generalizability. We conduct extensive evaluations on two benchmark datasets (SEED and SEED IV) and obtain state-of-the-art results in subject-independent emotion recognition. Our model boosts the SEED accuracy to 92.59% (4.69% improvement) with the lowest standard deviation of 3.21% (2.92% decrements) and SEED IV accuracy to 80.74% (6.90% improvement) with the lowest standard deviation of 4.14% (3.88% decrements) respectively.
Abstract:It is well-known that deep neural networks (DNNs) have shown remarkable success in many fields. However, when adding an imperceptible magnitude perturbation on the model input, the model performance might get rapid decrease. To address this issue, a randomness technique has been proposed recently, named Stochastic Neural Networks (SNNs). Specifically, SNNs inject randomness into the model to defend against unseen attacks and improve the adversarial robustness. However, existed studies on SNNs mainly focus on injecting fixed or learnable noises to model weights/activations. In this paper, we find that the existed SNNs performances are largely bottlenecked by the feature representation ability. Surprisingly, simply maximizing the variance per dimension of the feature distribution leads to a considerable boost beyond all previous methods, which we named maximize feature distribution variance stochastic neural network (MFDV-SNN). Extensive experiments on well-known white- and black-box attacks show that MFDV-SNN achieves a significant improvement over existing methods, which indicates that it is a simple but effective method to improve model robustness.
Abstract:Balancing group teaching and individual mentoring is an important issue in education area. The nature behind this issue is to explore common characteristics shared by multiple students and individual characteristics for each student. Biclustering methods have been proved successful for detecting meaningful patterns with the goal of driving group instructions based on students' characteristics. However, these methods ignore the individual characteristics of students as they only focus on common characteristics of students. In this article, we propose a framework to detect both group characteristics and individual characteristics of students simultaneously. We assume that the characteristics matrix of students' is composed of two parts: one is a low-rank matrix representing the common characteristics of students; the other is a sparse matrix representing individual characteristics of students. Thus, we treat the balancing issue as a matrix recovering problem. The experiment results show the effectiveness of our method. Firstly, it can detect meaningful biclusters that are comparable with the state-of-the-art biclutering algorithms. Secondly, it can identify individual characteristics for each student simultaneously. Both the source code of our algorithm and the real datasets are available upon request.
Abstract:Pre-trained models like BERT (Devlin et al., 2018) have dominated NLP / IR applications such as single sentence classification, text pair classification, and question answering. However, deploying these models in real systems is highly non-trivial due to their exorbitant computational costs. A common remedy to this is knowledge distillation (Hinton et al., 2015), leading to faster inference. However -- as we show here -- existing works are not optimized for dealing with pairs (or tuples) of texts. Consequently, they are either not scalable or demonstrate subpar performance. In this work, we propose DiPair -- a novel framework for distilling fast and accurate models on text pair tasks. Coupled with an end-to-end training strategy, DiPair is both highly scalable and offers improved quality-speed tradeoffs. Empirical studies conducted on both academic and real-world e-commerce benchmarks demonstrate the efficacy of the proposed approach with speedups of over 350x and minimal quality drop relative to the cross-attention teacher BERT model.
Abstract:Knowledge tracing (KT) which aims at predicting learner's knowledge mastery plays an important role in the computer-aided educational system. Given learners' exercise records, a knowledge tracing model can trace their hidden knowledge state dynamically. In recent years, many deep learning models have been applied to tackle the KT task, which has shown promising results. However, they still have limitations. Most existing methods simplify the exercising records as knowledge sequence, which fails to explore rich information existed in exercise texts. Besides, the latent hierarchical graph nature of exercises and knowledge remain unexplored. Thus, in this paper, we propose a hierarchical graph knowledge tracing model framework (HGKT) which could leverage the advantages of hierarchical exercise graph and sequence model to enhance the ability of knowledge tracing. Besides, we introduce the concept of problem schema to better represent a group of similar exercises and propose a hierarchical graph neural network to learn representations of problem schemas. Moreover, in the sequence model, we employ two attention mechanisms to highlight important historical states of students. In the testing stage, we present a K&S diagnosis matrix that could trace the transition of mastery of knowledge and problem schema, which could more easily be applied to different applications. Finally, we conduct extensive experiments to evaluate the model on a large scale real-world dataset. The results prove the effectiveness of our model and the diversity of its application scenarios.
Abstract:Despite the recent success of deep learning in continuous sign language recognition (CSLR), deep models typically focus on the most discriminative features, ignoring other potentially non-trivial and informative contents. Such characteristic heavily constrains their capability to learn implicit visual grammars behind the collaboration of different visual cues (i,e., hand shape, facial expression and body posture). By injecting multi-cue learning into neural network design, we propose a spatial-temporal multi-cue (STMC) network to solve the vision-based sequence learning problem. Our STMC network consists of a spatial multi-cue (SMC) module and a temporal multi-cue (TMC) module. The SMC module is dedicated to spatial representation and explicitly decomposes visual features of different cues with the aid of a self-contained pose estimation branch. The TMC module models temporal correlations along two parallel paths, i.e., intra-cue and inter-cue, which aims to preserve the uniqueness and explore the collaboration of multiple cues. Finally, we design a joint optimization strategy to achieve the end-to-end sequence learning of the STMC network. To validate the effectiveness, we perform experiments on three large-scale CSLR benchmarks: PHOENIX-2014, CSL and PHOENIX-2014-T. Experimental results demonstrate that the proposed method achieves new state-of-the-art performance on all three benchmarks.
Abstract:Convolutional neural networks (CNNs) have demonstrated superior performance in super-resolution (SR). However, most CNN-based SR methods neglect the different importance among feature channels or fail to take full advantage of the hierarchical features. To address these issues, this paper presents a novel recursive unit. Firstly, at the beginning of each unit, we adopt a compact channel attention mechanism to adaptively recalibrate the channel importance of input features. Then, the multi-level features, rather than only deep-level features, are extracted and fused. Additionally, we find that it will force our model to learn more details by using the learnable upsampling method (i.e., transposed convolution) only on residual branch (instead of using it both on residual branch and identity branch) while using the bicubic interpolation on the other branch. Analytic experiments show that our method achieves competitive results compared with the state-of-the-art methods and maintains faster speed as well.
Abstract:Virtual reality simulation is becoming popular as a training platform in surgical education. However, one important aspect of simulation-based surgical training that has not received much attention is the provision of automated real-time performance feedback to support the learning process. Performance feedback is actionable advice that improves novice behaviour. In simulation, automated feedback is typically extracted from prediction models trained using data mining techniques. Existing techniques suffer from either low effectiveness or low efficiency resulting in their inability to be used in real-time. In this paper, we propose a random forest based method that finds a balance between effectiveness and efficiency. Experimental results in a temporal bone surgery simulation show that the proposed method is able to extract highly effective feedback at a high level of efficiency.
Abstract:Simulation-based training (SBT) is gaining popularity as a low-cost and convenient training technique in a vast range of applications. However, for a SBT platform to be fully utilized as an effective training tool, it is essential that feedback on performance is provided automatically in real-time during training. It is the aim of this paper to develop an efficient and effective feedback generation method for the provision of real-time feedback in SBT. Existing methods either have low effectiveness in improving novice skills or suffer from low efficiency, resulting in their inability to be used in real-time. In this paper, we propose a neural network based method to generate feedback using the adversarial technique. The proposed method utilizes a bounded adversarial update to minimize a L1 regularized loss via back-propagation. We empirically show that the proposed method can be used to generate simple, yet effective feedback. Also, it was observed to have high effectiveness and efficiency when compared to existing methods, thus making it a promising option for real-time feedback generation in SBT.