Abstract:Understanding long-form video content presents significant challenges due to its temporal complexity and the substantial computational resources required. In this work, we propose an agent-based approach to enhance both the efficiency and effectiveness of long-form video understanding by utilizing large language models (LLMs) and their tool-harnessing ability. A key aspect of our method is query-adaptive frame sampling, which leverages the reasoning capabilities of LLMs to process only the most relevant frames in real-time, and addresses an important limitation of existing methods which typically involve sampling redundant or irrelevant frames. To enhance the reasoning abilities of our video-understanding agent, we leverage the self-reflective capabilities of LLMs to provide verbal reinforcement to the agent, which leads to improved performance while minimizing the number of frames accessed. We evaluate our method across several video understanding benchmarks and demonstrate that not only it enhances state-of-the-art performance but also improves efficiency by reducing the number of frames sampled.
Abstract:Name-based gender prediction has traditionally categorized individuals as either female or male based on their names, using a binary classification system. That binary approach can be problematic in the cases of gender-neutral names that do not align with any one gender, among other reasons. Relying solely on binary gender categories without recognizing gender-neutral names can reduce the inclusiveness of gender prediction tasks. We introduce an additional gender category, i.e., "neutral", to study and address potential gender biases in Large Language Models (LLMs). We evaluate the performance of several foundational and large language models in predicting gender based on first names only. Additionally, we investigate the impact of adding birth years to enhance the accuracy of gender prediction, accounting for shifting associations between names and genders over time. Our findings indicate that most LLMs identify male and female names with high accuracy (over 80%) but struggle with gender-neutral names (under 40%), and the accuracy of gender prediction is higher for English-based first names than non-English names. The experimental results show that incorporating the birth year does not improve the overall accuracy of gender prediction, especially for names with evolving gender associations. We recommend using caution when applying LLMs for gender identification in downstream tasks, particularly when dealing with non-binary gender labels.
Abstract:Large Language Models (LLMs) have been observed to encode and perpetuate harmful associations present in the training data. We propose a theoretically grounded framework called StereoMap to gain insights into their perceptions of how demographic groups have been viewed by society. The framework is grounded in the Stereotype Content Model (SCM); a well-established theory from psychology. According to SCM, stereotypes are not all alike. Instead, the dimensions of Warmth and Competence serve as the factors that delineate the nature of stereotypes. Based on the SCM theory, StereoMap maps LLMs' perceptions of social groups (defined by socio-demographic features) using the dimensions of Warmth and Competence. Furthermore, the framework enables the investigation of keywords and verbalizations of reasoning of LLMs' judgments to uncover underlying factors influencing their perceptions. Our results show that LLMs exhibit a diverse range of perceptions towards these groups, characterized by mixed evaluations along the dimensions of Warmth and Competence. Furthermore, analyzing the reasonings of LLMs, our findings indicate that LLMs demonstrate an awareness of social disparities, often stating statistical data and research findings to support their reasoning. This study contributes to the understanding of how LLMs perceive and represent social groups, shedding light on their potential biases and the perpetuation of harmful associations.
Abstract:As language models continue to be integrated into applications of personal and societal relevance, ensuring these models' trustworthiness is crucial, particularly with respect to producing consistent outputs regardless of sensitive attributes. Given that first names may serve as proxies for (intersectional) socio-demographic representations, it is imperative to examine the impact of first names on commonsense reasoning capabilities. In this paper, we study whether a model's reasoning given a specific input differs based on the first names provided. Our underlying assumption is that the reasoning about Alice should not differ from the reasoning about James. We propose and implement a controlled experimental framework to measure the causal effect of first names on commonsense reasoning, enabling us to distinguish between model predictions due to chance and caused by actual factors of interest. Our results indicate that the frequency of first names has a direct effect on model prediction, with less frequent names yielding divergent predictions compared to more frequent names. To gain insights into the internal mechanisms of models that are contributing to these behaviors, we also conduct an in-depth explainable analysis. Overall, our findings suggest that to ensure model robustness, it is essential to augment datasets with more diverse first names during the configuration stage.
Abstract:Previous work has examined how debiasing language models affect downstream tasks, specifically, how debiasing techniques influence task performance and whether debiased models also make impartial predictions in downstream tasks or not. However, what we don't understand well yet is why debiasing methods have varying impacts on downstream tasks and how debiasing techniques affect internal components of language models, i.e., neurons, layers, and attentions. In this paper, we decompose the internal mechanisms of debiasing language models with respect to gender by applying causal mediation analysis to understand the influence of debiasing methods on toxicity detection as a downstream task. Our findings suggest a need to test the effectiveness of debiasing methods with different bias metrics, and to focus on changes in the behavior of certain components of the models, e.g.,first two layers of language models, and attention heads.