Abstract:Large Language Models (LLMs) pruning seeks to remove unimportant weights for inference speedup with minimal performance impact. However, existing methods often suffer from performance loss without full-model sparsity-aware fine-tuning. This paper presents Wanda++, a novel pruning framework that outperforms the state-of-the-art methods by utilizing decoder-block-level \textbf{regional} gradients. Specifically, Wanda++ improves the pruning score with regional gradients for the first time and proposes an efficient regional optimization method to minimize pruning-induced output discrepancies between the dense and sparse decoder output. Notably, Wanda++ improves perplexity by up to 32\% over Wanda in the language modeling task and generalizes effectively to downstream tasks. Further experiments indicate our proposed method is orthogonal to sparsity-aware fine-tuning, where Wanda++ can be combined with LoRA fine-tuning to achieve a similar perplexity improvement as the Wanda method. The proposed method is lightweight, pruning a 7B LLaMA model in under 10 minutes on a single NVIDIA H100 GPU.
Abstract:Understanding long-form video content presents significant challenges due to its temporal complexity and the substantial computational resources required. In this work, we propose an agent-based approach to enhance both the efficiency and effectiveness of long-form video understanding by utilizing large language models (LLMs) and their tool-harnessing ability. A key aspect of our method is query-adaptive frame sampling, which leverages the reasoning capabilities of LLMs to process only the most relevant frames in real-time, and addresses an important limitation of existing methods which typically involve sampling redundant or irrelevant frames. To enhance the reasoning abilities of our video-understanding agent, we leverage the self-reflective capabilities of LLMs to provide verbal reinforcement to the agent, which leads to improved performance while minimizing the number of frames accessed. We evaluate our method across several video understanding benchmarks and demonstrate that not only it enhances state-of-the-art performance but also improves efficiency by reducing the number of frames sampled.
Abstract:Direct alignment algorithms (DAAs), such as direct preference optimization (DPO), have become popular alternatives for Reinforcement Learning from Human Feedback (RLHF) due to their simplicity, efficiency, and stability. However, the preferences used in DAAs are usually collected before the alignment training begins and remain unchanged (off-policy). This can lead to two problems where the policy model (1) picks up on spurious correlations in the dataset (as opposed to learning the intended alignment expressed in the human preference labels), and (2) overfits to feedback on off-policy trajectories that have less likelihood of being generated by an updated policy model. To address these issues, we introduce Self-Reviewing and Alignment (SeRA), a cost-efficient and effective method that can be readily combined with existing DAAs. SeRA comprises of two components: (1) sample selection using implicit reward margins, which helps alleviate over-fitting to some undesired features, and (2) preference bootstrapping using implicit rewards to augment preference data with updated policy models in a cost-efficient manner. Extensive experimentation, including some on instruction-following tasks, demonstrate the effectiveness and generality of SeRA in training LLMs on offline preference datasets with DAAs.