Abstract:Retrieval-augmented generation models offer many benefits over standalone language models: besides a textual answer to a given query they provide provenance items retrieved from an updateable knowledge base. However, they are also more complex systems and need to handle long inputs. In this work, we introduce FiD-Light to strongly increase the efficiency of the state-of-the-art retrieval-augmented FiD model, while maintaining the same level of effectiveness. Our FiD-Light model constrains the information flow from the encoder (which encodes passages separately) to the decoder (using concatenated encoded representations). Furthermore, we adapt FiD-Light with re-ranking capabilities through textual source pointers, to improve the top-ranked provenance precision. Our experiments on a diverse set of seven knowledge intensive tasks (KILT) show FiD-Light consistently improves the Pareto frontier between query latency and effectiveness. FiD-Light with source pointing sets substantial new state-of-the-art results on six KILT tasks for combined text generation and provenance retrieval evaluation, while maintaining reasonable efficiency.
Abstract:This paper studies multi-task training of retrieval-augmented generation models for knowledge-intensive tasks. We propose to clean the training set by utilizing a distinct property of knowledge-intensive generation: The connection of query-answer pairs to items in the knowledge base. We filter training examples via a threshold of confidence on the relevance labels, whether a pair is answerable by the knowledge base or not. We train a single Fusion-in-Decoder (FiD) generator on seven combined tasks of the KILT benchmark. The experimental results suggest that our simple yet effective approach substantially improves competitive baselines on two strongly imbalanced tasks; and shows either smaller improvements or no significant regression on the remaining tasks. Furthermore, we demonstrate our multi-task training with relevance label sampling scales well with increased model capacity and achieves state-of-the-art results in five out of seven KILT tasks.
Abstract:Pretrained, large, generative language models (LMs) have had great success in a wide range of sequence tagging and structured prediction tasks. Casting a sequence tagging task as a Seq2Seq one requires deciding the formats of the input and output sequences. However, we lack a principled understanding of the trade-offs associated with these formats (such as the effect on model accuracy, sequence length, multilingual generalization, hallucination). In this paper, we rigorously study different formats one could use for casting input text sentences and their output labels into the input and target (i.e., output) of a Seq2Seq model. Along the way, we introduce a new format, which we show to not only be simpler but also more effective. Additionally the new format demonstrates significant gains in the multilingual settings -- both zero-shot transfer learning and joint training. Lastly, we find that the new format is more robust and almost completely devoid of hallucination -- an issue we find common in existing formats. With well over a 1000 experiments studying 14 different formats, over 7 diverse public benchmarks -- including 3 multilingual datasets spanning 7 languages -- we believe our findings provide a strong empirical basis in understanding how we should tackle sequence tagging tasks.
Abstract:The milestone improvements brought about by deep representation learning and pre-training techniques have led to large performance gains across downstream NLP, IR and Vision tasks. Multimodal modeling techniques aim to leverage large high-quality visio-linguistic datasets for learning complementary information (across image and text modalities). In this paper, we introduce the Wikipedia-based Image Text (WIT) Dataset (https://github.com/google-research-datasets/wit) to better facilitate multimodal, multilingual learning. WIT is composed of a curated set of 37.6 million entity rich image-text examples with 11.5 million unique images across 108 Wikipedia languages. Its size enables WIT to be used as a pretraining dataset for multimodal models, as we show when applied to downstream tasks such as image-text retrieval. WIT has four main and unique advantages. First, WIT is the largest multimodal dataset by the number of image-text examples by 3x (at the time of writing). Second, WIT is massively multilingual (first of its kind) with coverage over 100+ languages (each of which has at least 12K examples) and provides cross-lingual texts for many images. Third, WIT represents a more diverse set of concepts and real world entities relative to what previous datasets cover. Lastly, WIT provides a very challenging real-world test set, as we empirically illustrate using an image-text retrieval task as an example.
Abstract:Pre-trained multilingual language models such as mBERT have shown immense gains for several natural language processing (NLP) tasks, especially in the zero-shot cross-lingual setting. Most, if not all, of these pre-trained models rely on the masked-language modeling (MLM) objective as the key language learning objective. The principle behind these approaches is that predicting the masked words with the help of the surrounding text helps learn potent contextualized representations. Despite the strong representation learning capability enabled by MLM, we demonstrate an inherent limitation of MLM for multilingual representation learning. In particular, by requiring the model to predict the language-specific token, the MLM objective disincentivizes learning a language-agnostic representation -- which is a key goal of multilingual pre-training. Therefore to encourage better cross-lingual representation learning we propose the DICT-MLM method. DICT-MLM works by incentivizing the model to be able to predict not just the original masked word, but potentially any of its cross-lingual synonyms as well. Our empirical analysis on multiple downstream tasks spanning 30+ languages, demonstrates the efficacy of the proposed approach and its ability to learn better multilingual representations.
Abstract:Pre-trained models like BERT (Devlin et al., 2018) have dominated NLP / IR applications such as single sentence classification, text pair classification, and question answering. However, deploying these models in real systems is highly non-trivial due to their exorbitant computational costs. A common remedy to this is knowledge distillation (Hinton et al., 2015), leading to faster inference. However -- as we show here -- existing works are not optimized for dealing with pairs (or tuples) of texts. Consequently, they are either not scalable or demonstrate subpar performance. In this work, we propose DiPair -- a novel framework for distilling fast and accurate models on text pair tasks. Coupled with an end-to-end training strategy, DiPair is both highly scalable and offers improved quality-speed tradeoffs. Empirical studies conducted on both academic and real-world e-commerce benchmarks demonstrate the efficacy of the proposed approach with speedups of over 350x and minimal quality drop relative to the cross-attention teacher BERT model.
Abstract:The computational cost of training with softmax cross entropy loss grows linearly with the number of classes. For the settings where a large number of classes are involved, a common method to speed up training is to sample a subset of classes and utilize an estimate of the gradient based on these classes, known as the sampled softmax method. However, the sampled softmax provides a biased estimate of the gradient unless the samples are drawn from the exact softmax distribution, which is again expensive to compute. Therefore, a widely employed practical approach (without theoretical justification) involves sampling from a simpler distribution in the hope of approximating the exact softmax distribution. In this paper, we develop the first theoretical understanding of the role that different sampling distributions play in determining the quality of sampled softmax. Motivated by our analysis and the work on kernel-based sampling, we propose the Random Fourier Softmax (RF-softmax) method that utilizes the powerful Random Fourier features to enable more efficient and accurate sampling from the (approximate) softmax distribution. We show that RF-softmax leads to low bias in estimation in terms of both the full softmax distribution and the full softmax gradient. Furthermore, the cost of RF-softmax scales only logarithmically with the number of classes.
Abstract:We consider the problem of retrieving the most relevant labels for a given input when the size of the output space is very large. Retrieval methods are modeled as set-valued classifiers which output a small set of classes for each input, and a mistake is made if the label is not in the output set. Despite its practical importance, a statistically principled, yet practical solution to this problem is largely missing. To this end, we first define a family of surrogate losses and show that they are calibrated and convex under certain conditions on the loss parameters and data distribution, thereby establishing a statistical and analytical basis for using these losses. Furthermore, we identify a particularly intuitive class of loss functions in the aforementioned family and show that they are amenable to practical implementation in the large output space setting (i.e. computation is possible without evaluating scores of all labels) by developing a technique called Stochastic Negative Mining. We also provide generalization error bounds for the losses in the family. Finally, we conduct experiments which demonstrate that Stochastic Negative Mining yields benefits over commonly used negative sampling approaches.
Abstract:We study the collaborative PAC learning problem recently proposed in Blum et al.~\cite{BHPQ17}, in which we have $k$ players and they want to learn a target function collaboratively, such that the learned function approximates the target function well on all players' distributions simultaneously. The quality of the collaborative learning algorithm is measured by the ratio between the sample complexity of the algorithm and that of the learning algorithm for a single distribution (called the overhead). We obtain a collaborative learning algorithm with overhead $O(\ln k)$, improving the one with overhead $O(\ln^2 k)$ in \cite{BHPQ17}. We also show that an $\Omega(\ln k)$ overhead is inevitable when $k$ is polynomial bounded by the VC dimension of the hypothesis class. Finally, our experimental study has demonstrated the superiority of our algorithm compared with the one in Blum et al. on real-world datasets.
Abstract:We study the classic $k$-means/median clustering, which are fundamental problems in unsupervised learning, in the setting where data are partitioned across multiple sites, and where we are allowed to discard a small portion of the data by labeling them as outliers. We propose a simple approach based on constructing small summary for the original dataset. The proposed method is time and communication efficient, has good approximation guarantees, and can identify the global outliers effectively. To the best of our knowledge, this is the first practical algorithm with theoretical guarantees for distributed clustering with outliers. Our experiments on both real and synthetic data have demonstrated the clear superiority of our algorithm against all the baseline algorithms in almost all metrics.