Abstract:ControlNet excels at creating content that closely matches precise contours in user-provided masks. However, when these masks contain noise, as a frequent occurrence with non-expert users, the output would include unwanted artifacts. This paper first highlights the crucial role of controlling the impact of these inexplicit masks with diverse deterioration levels through in-depth analysis. Subsequently, to enhance controllability with inexplicit masks, an advanced Shape-aware ControlNet consisting of a deterioration estimator and a shape-prior modulation block is devised. The deterioration estimator assesses the deterioration factor of the provided masks. Then this factor is utilized in the modulation block to adaptively modulate the model's contour-following ability, which helps it dismiss the noise part in the inexplicit masks. Extensive experiments prove its effectiveness in encouraging ControlNet to interpret inaccurate spatial conditions robustly rather than blindly following the given contours. We showcase application scenarios like modifying shape priors and composable shape-controllable generation. Codes are soon available.
Abstract:Animal Pose Estimation and Tracking (APT) is a critical task in detecting and monitoring the keypoints of animals across a series of video frames, which is essential for understanding animal behavior. Past works relating to animals have primarily focused on either animal tracking or single-frame animal pose estimation only, neglecting the integration of both aspects. The absence of comprehensive APT datasets inhibits the progression and evaluation of animal pose estimation and tracking methods based on videos, thereby constraining their real-world applications. To fill this gap, we introduce APTv2, the pioneering large-scale benchmark for animal pose estimation and tracking. APTv2 comprises 2,749 video clips filtered and collected from 30 distinct animal species. Each video clip includes 15 frames, culminating in a total of 41,235 frames. Following meticulous manual annotation and stringent verification, we provide high-quality keypoint and tracking annotations for a total of 84,611 animal instances, split into easy and hard subsets based on the number of instances that exists in the frame. With APTv2 as the foundation, we establish a simple baseline method named \posetrackmethodname and provide benchmarks for representative models across three tracks: (1) single-frame animal pose estimation track to evaluate both intra- and inter-domain transfer learning performance, (2) low-data transfer and generalization track to evaluate the inter-species domain generalization performance, and (3) animal pose tracking track. Our experimental results deliver key empirical insights, demonstrating that APTv2 serves as a valuable benchmark for animal pose estimation and tracking. It also presents new challenges and opportunities for future research. The code and dataset are released at \href{https://github.com/ViTAE-Transformer/APTv2}{https://github.com/ViTAE-Transformer/APTv2}.
Abstract:Diffusion models have achieved remarkable success in generating realistic images but suffer from generating accurate human hands, such as incorrect finger counts or irregular shapes. This difficulty arises from the complex task of learning the physical structure and pose of hands from training images, which involves extensive deformations and occlusions. For correct hand generation, our paper introduces a lightweight post-processing solution called $\textbf{HandRefiner}$. HandRefiner employs a conditional inpainting approach to rectify malformed hands while leaving other parts of the image untouched. We leverage the hand mesh reconstruction model that consistently adheres to the correct number of fingers and hand shape, while also being capable of fitting the desired hand pose in the generated image. Given a generated failed image due to malformed hands, we utilize ControlNet modules to re-inject such correct hand information. Additionally, we uncover a phase transition phenomenon within ControlNet as we vary the control strength. It enables us to take advantage of more readily available synthetic data without suffering from the domain gap between realistic and synthetic hands. Experiments demonstrate that HandRefiner can significantly improve the generation quality quantitatively and qualitatively. The code is available at https://github.com/wenquanlu/HandRefiner .
Abstract:With the world population rapidly increasing, transforming our agrifood systems to be more productive, efficient, safe, and sustainable is crucial to mitigate potential food shortages. Recently, artificial intelligence (AI) techniques such as deep learning (DL) have demonstrated their strong abilities in various areas, including language, vision, remote sensing (RS), and agrifood systems applications. However, the overall impact of AI on agrifood systems remains unclear. In this paper, we thoroughly review how AI techniques can transform agrifood systems and contribute to the modern agrifood industry. Firstly, we summarize the data acquisition methods in agrifood systems, including acquisition, storage, and processing techniques. Secondly, we present a progress review of AI methods in agrifood systems, specifically in agriculture, animal husbandry, and fishery, covering topics such as agrifood classification, growth monitoring, yield prediction, and quality assessment. Furthermore, we highlight potential challenges and promising research opportunities for transforming modern agrifood systems with AI. We hope this survey could offer an overall picture to newcomers in the field and serve as a starting point for their further research.
Abstract:Window-based attention has become a popular choice in vision transformers due to its superior performance, lower computational complexity, and less memory footprint. However, the design of hand-crafted windows, which is data-agnostic, constrains the flexibility of transformers to adapt to objects of varying sizes, shapes, and orientations. To address this issue, we propose a novel quadrangle attention (QA) method that extends the window-based attention to a general quadrangle formulation. Our method employs an end-to-end learnable quadrangle regression module that predicts a transformation matrix to transform default windows into target quadrangles for token sampling and attention calculation, enabling the network to model various targets with different shapes and orientations and capture rich context information. We integrate QA into plain and hierarchical vision transformers to create a new architecture named QFormer, which offers minor code modifications and negligible extra computational cost. Extensive experiments on public benchmarks demonstrate that QFormer outperforms existing representative vision transformers on various vision tasks, including classification, object detection, semantic segmentation, and pose estimation. The code will be made publicly available at \href{https://github.com/ViTAE-Transformer/QFormer}{QFormer}.
Abstract:In this paper, we show the surprisingly good properties of plain vision transformers for body pose estimation from various aspects, namely simplicity in model structure, scalability in model size, flexibility in training paradigm, and transferability of knowledge between models, through a simple baseline model dubbed ViTPose. Specifically, ViTPose employs the plain and non-hierarchical vision transformer as an encoder to encode features and a lightweight decoder to decode body keypoints in either a top-down or a bottom-up manner. It can be scaled up from about 20M to 1B parameters by taking advantage of the scalable model capacity and high parallelism of the vision transformer, setting a new Pareto front for throughput and performance. Besides, ViTPose is very flexible regarding the attention type, input resolution, and pre-training and fine-tuning strategy. Based on the flexibility, a novel ViTPose+ model is proposed to deal with heterogeneous body keypoint categories in different types of body pose estimation tasks via knowledge factorization, i.e., adopting task-agnostic and task-specific feed-forward networks in the transformer. We also empirically demonstrate that the knowledge of large ViTPose models can be easily transferred to small ones via a simple knowledge token. Experimental results show that our ViTPose model outperforms representative methods on the challenging MS COCO Human Keypoint Detection benchmark at both top-down and bottom-up settings. Furthermore, our ViTPose+ model achieves state-of-the-art performance simultaneously on a series of body pose estimation tasks, including MS COCO, AI Challenger, OCHuman, MPII for human keypoint detection, COCO-Wholebody for whole-body keypoint detection, as well as AP-10K and APT-36K for animal keypoint detection, without sacrificing inference speed.
Abstract:The 1$^{\text{st}}$ Workshop on Maritime Computer Vision (MaCVi) 2023 focused on maritime computer vision for Unmanned Aerial Vehicles (UAV) and Unmanned Surface Vehicle (USV), and organized several subchallenges in this domain: (i) UAV-based Maritime Object Detection, (ii) UAV-based Maritime Object Tracking, (iii) USV-based Maritime Obstacle Segmentation and (iv) USV-based Maritime Obstacle Detection. The subchallenges were based on the SeaDronesSee and MODS benchmarks. This report summarizes the main findings of the individual subchallenges and introduces a new benchmark, called SeaDronesSee Object Detection v2, which extends the previous benchmark by including more classes and footage. We provide statistical and qualitative analyses, and assess trends in the best-performing methodologies of over 130 submissions. The methods are summarized in the appendix. The datasets, evaluation code and the leaderboard are publicly available at https://seadronessee.cs.uni-tuebingen.de/macvi.
Abstract:Self-supervised pre-training vision transformer (ViT) via masked image modeling (MIM) has been proven very effective. However, customized algorithms should be carefully designed for the hierarchical ViTs, e.g., GreenMIM, instead of using the vanilla and simple MAE for the plain ViT. More importantly, since these hierarchical ViTs cannot reuse the off-the-shelf pre-trained weights of the plain ViTs, the requirement of pre-training them leads to a massive amount of computational cost, thereby incurring both algorithmic and computational complexity. In this paper, we address this problem by proposing a novel idea of disentangling the hierarchical architecture design from the self-supervised pre-training. We transform the plain ViT into a hierarchical one with minimal changes. Technically, we change the stride of linear embedding layer from 16 to 4 and add convolution (or simple average) pooling layers between the transformer blocks, thereby reducing the feature size from 1/4 to 1/32 sequentially. Despite its simplicity, it outperforms the plain ViT baseline in classification, detection, and segmentation tasks on ImageNet, MS COCO, Cityscapes, and ADE20K benchmarks, respectively. We hope this preliminary study could draw more attention from the community on developing effective (hierarchical) ViTs while avoiding the pre-training cost by leveraging the off-the-shelf checkpoints. The code and models will be released at https://github.com/ViTAE-Transformer/HPViT.
Abstract:Large-scale vision foundation models have made significant progress in visual tasks on natural images, where the vision transformers are the primary choice for their good scalability and representation ability. However, the utilization of large models in the remote sensing (RS) community remains under-explored where existing models are still at small-scale, which limits the performance. In this paper, we resort to plain vision transformers with about 100 million parameters and make the first attempt to propose large vision models customized for RS tasks and explore how such large models perform. Specifically, to handle the large image size and objects of various orientations in RS images, we propose a new rotated varied-size window attention to substitute the original full attention in transformers, which could significantly reduce the computational cost and memory footprint while learn better object representation by extracting rich context from the generated diverse windows. Experiments on detection tasks demonstrate the superiority of our model over all state-of-the-art models, achieving 81.16% mAP on the DOTA-V1.0 dataset. The results of our models on downstream classification and segmentation tasks also demonstrate competitive performance compared with the existing advanced methods. Further experiments show the advantages of our models on computational complexity and few-shot learning.
Abstract:Current object detectors typically have a feature pyramid (FP) module for multi-level feature fusion (MFF) which aims to mitigate the gap between features from different levels and form a comprehensive object representation to achieve better detection performance. However, they usually require heavy cross-level connections or iterative refinement to obtain better MFF result, making them complicated in structure and inefficient in computation. To address these issues, we propose a novel and efficient context modeling mechanism that can help existing FPs deliver better MFF results while reducing the computational costs effectively. In particular, we introduce a novel insight that comprehensive contexts can be decomposed and condensed into two types of representations for higher efficiency. The two representations include a locally concentrated representation and a globally summarized representation, where the former focuses on extracting context cues from nearby areas while the latter extracts key representations of the whole image scene as global context cues. By collecting the condensed contexts, we employ a Transformer decoder to investigate the relations between them and each local feature from the FP and then refine the MFF results accordingly. As a result, we obtain a simple and light-weight Transformer-based Context Condensation (TCC) module, which can boost various FPs and lower their computational costs simultaneously. Extensive experimental results on the challenging MS COCO dataset show that TCC is compatible to four representative FPs and consistently improves their detection accuracy by up to 7.8 % in terms of average precision and reduce their complexities by up to around 20% in terms of GFLOPs, helping them achieve state-of-the-art performance more efficiently. Code will be released.