Abstract:The rapid escalation from elementary school-level to frontier problems of the difficulty for LLM benchmarks in recent years have weaved a miracle for researchers that we are only inches away from surpassing human intelligence. However, is the LLMs' remarkable reasoning ability indeed comes from true intelligence by human standards, or are they simply reciting solutions witnessed during training at an Internet level? To study this problem, we propose RoR-Bench, a novel, multi-modal benchmark for detecting LLM's recitation behavior when asked simple reasoning problems but with conditions subtly shifted, and conduct empirical analysis on our benchmark. Surprisingly, we found existing cutting-edge LLMs unanimously exhibits extremely severe recitation behavior; by changing one phrase in the condition, top models such as OpenAI-o1 and DeepSeek-R1 can suffer $60\%$ performance loss on elementary school-level arithmetic and reasoning problems. Such findings are a wake-up call to the LLM community that compels us to re-evaluate the true intelligence level of cutting-edge LLMs.
Abstract:Identifying immune checkpoint inhibitor (ICI) studies in genomic repositories like Gene Expression Omnibus (GEO) is vital for cancer research yet remains challenging due to semantic ambiguity, extreme class imbalance, and limited labeled data in low-resource settings. We present ProtoBERT-LoRA, a hybrid framework that combines PubMedBERT with prototypical networks and Low-Rank Adaptation (LoRA) for efficient fine-tuning. The model enforces class-separable embeddings via episodic prototype training while preserving biomedical domain knowledge. Our dataset was divided as: Training (20 positive, 20 negative), Prototype Set (10 positive, 10 negative), Validation (20 positive, 200 negative), and Test (71 positive, 765 negative). Evaluated on test dataset, ProtoBERT-LoRA achieved F1-score of 0.624 (precision: 0.481, recall: 0.887), outperforming the rule-based system, machine learning baselines and finetuned PubMedBERT. Application to 44,287 unlabeled studies reduced manual review efforts by 82%. Ablation studies confirmed that combining prototypes with LoRA improved performance by 29% over stand-alone LoRA.
Abstract:Continuous Emotion Recognition (CER) plays a crucial role in intelligent human-computer interaction, mental health monitoring, and autonomous driving. Emotion modeling based on the Valence-Arousal (VA) space enables a more nuanced representation of emotional states. However, existing methods still face challenges in handling long-term dependencies and capturing complex temporal dynamics. To address these issues, this paper proposes a novel emotion recognition model, Mamba-VA, which leverages the Mamba architecture to efficiently model sequential emotional variations in video frames. First, the model employs a Masked Autoencoder (MAE) to extract deep visual features from video frames, enhancing the robustness of temporal information. Then, a Temporal Convolutional Network (TCN) is utilized for temporal modeling to capture local temporal dependencies. Subsequently, Mamba is applied for long-sequence modeling, enabling the learning of global emotional trends. Finally, a fully connected (FC) layer performs regression analysis to predict continuous valence and arousal values. Experimental results on the Valence-Arousal (VA) Estimation task of the 8th competition on Affective Behavior Analysis in-the-wild (ABAW) demonstrate that the proposed model achieves valence and arousal scores of 0.5362 (0.5036) and 0.4310 (0.4119) on the validation (test) set, respectively, outperforming the baseline. The source code is available on GitHub:https://github.com/FreedomPuppy77/Charon.