Abstract:Automatic phenotyping is a task of identifying cohorts of patients that match a predefined set of criteria. Phenotyping typically involves classifying long clinical documents that contain thousands of tokens. At the same time, recent state-of-art transformer-based pre-trained language models limit the input to a few hundred tokens (e.g. 512 tokens for BERT). We evaluate several strategies for incorporating pre-trained sentence encoders into document-level representations of clinical text, and find that hierarchical transformers without pre-training are competitive with task pre-trained models.
Abstract:We present a timely and novel methodology that combines disease estimates from mechanistic models with digital traces, via interpretable machine-learning methodologies, to reliably forecast COVID-19 activity in Chinese provinces in real-time. Specifically, our method is able to produce stable and accurate forecasts 2 days ahead of current time, and uses as inputs (a) official health reports from Chinese Center Disease for Control and Prevention (China CDC), (b) COVID-19-related internet search activity from Baidu, (c) news media activity reported by Media Cloud, and (d) daily forecasts of COVID-19 activity from GLEAM, an agent-based mechanistic model. Our machine-learning methodology uses a clustering technique that enables the exploitation of geo-spatial synchronicities of COVID-19 activity across Chinese provinces, and a data augmentation technique to deal with the small number of historical disease activity observations, characteristic of emerging outbreaks. Our model's predictive power outperforms a collection of baseline models in 27 out of the 32 Chinese provinces, and could be easily extended to other geographies currently affected by the COVID-19 outbreak to help decision makers.