Abstract:Identifying immune checkpoint inhibitor (ICI) studies in genomic repositories like Gene Expression Omnibus (GEO) is vital for cancer research yet remains challenging due to semantic ambiguity, extreme class imbalance, and limited labeled data in low-resource settings. We present ProtoBERT-LoRA, a hybrid framework that combines PubMedBERT with prototypical networks and Low-Rank Adaptation (LoRA) for efficient fine-tuning. The model enforces class-separable embeddings via episodic prototype training while preserving biomedical domain knowledge. Our dataset was divided as: Training (20 positive, 20 negative), Prototype Set (10 positive, 10 negative), Validation (20 positive, 200 negative), and Test (71 positive, 765 negative). Evaluated on test dataset, ProtoBERT-LoRA achieved F1-score of 0.624 (precision: 0.481, recall: 0.887), outperforming the rule-based system, machine learning baselines and finetuned PubMedBERT. Application to 44,287 unlabeled studies reduced manual review efforts by 82%. Ablation studies confirmed that combining prototypes with LoRA improved performance by 29% over stand-alone LoRA.
Abstract:The identification of predictive biomarkers from a large scale of covariates for subgroup analysis has attracted fundamental attention in medical research. In this article, we propose a generalized penalized regression method with a novel penalty function, for enforcing the hierarchy structure between the prognostic and predictive effects, such that a nonzero predictive effect must induce its ancestor prognostic effects being nonzero in the model. Our method is able to select useful predictive biomarkers by yielding a sparse, interpretable, and predictable model for subgroup analysis, and can deal with different types of response variable such as continuous, categorical, and time-to-event data. We show that our method is asymptotically consistent under some regularized conditions. To minimize the generalized penalized regression model, we propose a novel integrative optimization algorithm by integrating the majorization-minimization and the alternating direction method of multipliers, which is named after \texttt{smog}. The enriched simulation study and real case study demonstrate that our method is very powerful for discovering the true predictive biomarkers and identifying subgroups of patients.