Abstract:The vast majority of retrieval models depend on vector inner products to produce a relevance score between a query and a document. This naturally limits the expressiveness of the relevance score that can be employed. We propose a new paradigm, instead of producing a vector to represent the query we produce a small neural network which acts as a learned relevance function. This small neural network takes in a representation of the document, in this paper we use a single vector, and produces a scalar relevance score. To produce the little neural network we use a hypernetwork, a network that produce the weights of other networks, as our query encoder or as we call it a Hypencoder. Experiments on in-domain search tasks show that Hypencoder is able to significantly outperform strong dense retrieval models and has higher metrics then reranking models and models an order of magnitude larger. Hypencoder is also shown to generalize well to out-of-domain search tasks. To assess the extent of Hypencoder's capabilities, we evaluate on a set of hard retrieval tasks including tip-of-the-tongue retrieval and instruction-following retrieval tasks and find that the performance gap widens substantially compared to standard retrieval tasks. Furthermore, to demonstrate the practicality of our method we implement an approximate search algorithm and show that our model is able to search 8.8M documents in under 60ms.
Abstract:Evaluating personalized text generated by large language models (LLMs) is challenging, as only the LLM user, i.e., prompt author, can reliably assess the output, but re-engaging the same individuals across studies is infeasible. This paper addresses the challenge of evaluating personalized text generation by introducing ExPerT, an explainable reference-based evaluation framework. ExPerT leverages an LLM to extract atomic aspects and their evidence from the generated and reference texts, match the aspects, and evaluate their alignment based on content and writing style -- two key attributes in personalized text generation. Additionally, ExPerT generates detailed, fine-grained explanations for every step of the evaluation process, enhancing transparency and interpretability. Our experiments demonstrate that ExPerT achieves a 7.2% relative improvement in alignment with human judgments compared to the state-of-the-art text generation evaluation methods. Furthermore, human evaluators rated the usability of ExPerT's explanations at 4.7 out of 5, highlighting its effectiveness in making evaluation decisions more interpretable.
Abstract:This paper presents ICAT, an evaluation framework for measuring coverage of diverse factual information in long-form text generation. ICAT breaks down a long output text into a list of atomic claims and not only verifies each claim through retrieval from a (reliable) knowledge source, but also computes the alignment between the atomic factual claims and various aspects expected to be presented in the output. We study three implementations of the ICAT framework, each with a different assumption on the availability of aspects and alignment method. By adopting data from the diversification task in the TREC Web Track and the ClueWeb corpus, we evaluate the ICAT framework. We demonstrate strong correlation with human judgments and provide comprehensive evaluation across multiple state-of-the-art LLMs. Our framework further offers interpretable and fine-grained analysis of diversity and coverage. Its modular design allows for easy adaptation to different domains and datasets, making it a valuable tool for evaluating the qualitative aspects of long-form responses produced by LLMs.
Abstract:Personalized text generation requires a unique ability of large language models (LLMs) to learn from context that they often do not encounter during their standard training. One way to encourage LLMs to better use personalized context for generating outputs that better align with the user's expectations is to instruct them to reason over the user's past preferences, background knowledge, or writing style. To achieve this, we propose Reasoning-Enhanced Self-Training for Personalized Text Generation (REST-PG), a framework that trains LLMs to reason over personal data during response generation. REST-PG first generates reasoning paths to train the LLM's reasoning abilities and then employs Expectation-Maximization Reinforced Self-Training to iteratively train the LLM based on its own high-reward outputs. We evaluate REST-PG on the LongLaMP benchmark, consisting of four diverse personalized long-form text generation tasks. Our experiments demonstrate that REST-PG achieves significant improvements over state-of-the-art baselines, with an average relative performance gain of 14.5% on the benchmark.
Abstract:An evolving solution to address hallucination and enhance accuracy in large language models (LLMs) is Retrieval-Augmented Generation (RAG), which involves augmenting LLMs with information retrieved from an external knowledge source, such as the web. This paper profiles several RAG execution pipelines and demystifies the complex interplay between their retrieval and generation phases. We demonstrate that while exact retrieval schemes are expensive, they can reduce inference time compared to approximate retrieval variants because an exact retrieval model can send a smaller but more accurate list of documents to the generative model while maintaining the same end-to-end accuracy. This observation motivates the acceleration of the exact nearest neighbor search for RAG. In this work, we design Intelligent Knowledge Store (IKS), a type-2 CXL device that implements a scale-out near-memory acceleration architecture with a novel cache-coherent interface between the host CPU and near-memory accelerators. IKS offers 13.4-27.9x faster exact nearest neighbor search over a 512GB vector database compared with executing the search on Intel Sapphire Rapids CPUs. This higher search performance translates to 1.7-26.3x lower end-to-end inference time for representative RAG applications. IKS is inherently a memory expander; its internal DRAM can be disaggregated and used for other applications running on the server to prevent DRAM, which is the most expensive component in today's servers, from being stranded.
Abstract:In the fast-evolving field of information retrieval (IR), the integration of generative AI technologies such as large language models (LLMs) is transforming how users search for and interact with information. Recognizing this paradigm shift at the intersection of IR and generative AI (IR-GenAI), a visioning workshop supported by the Computing Community Consortium (CCC) was held in July 2024 to discuss the future of IR in the age of generative AI. This workshop convened 44 experts in information retrieval, natural language processing, human-computer interaction, and artificial intelligence from academia, industry, and government to explore how generative AI can enhance IR and vice versa, and to identify the major challenges and opportunities in this rapidly advancing field. This report contains a summary of discussions as potentially important research topics and contains a list of recommendations for academics, industry practitioners, institutions, evaluation campaigns, and funding agencies.
Abstract:Personalized search represents a problem where retrieval models condition on historical user interaction data in order to improve retrieval results. However, personalization is commonly perceived as opaque and not amenable to control by users. Further, personalization necessarily limits the space of items that users are exposed to. Therefore, prior work notes a tension between personalization and users' ability for discovering novel items. While discovery of novel items in personalization setups may be resolved through search result diversification, these approaches do little to allow user control over personalization. Therefore, in this paper, we introduce an approach for controllable personalized search. Our model, CtrlCE presents a novel cross-encoder model augmented with an editable memory constructed from users historical items. Our proposed memory augmentation allows cross-encoder models to condition on large amounts of historical user data and supports interaction from users permitting control over personalization. Further, controllable personalization for search must account for queries which don't require personalization, and in turn user control. For this, we introduce a calibrated mixing model which determines when personalization is necessary. This allows system designers using CtrlCE to only obtain user input for control when necessary. In multiple datasets of personalized search, we show CtrlCE to result in effective personalization as well as fulfill various key goals for controllable personalized search.
Abstract:Personalization of Large Language Models (LLMs) has recently become increasingly important with a wide range of applications. Despite the importance and recent progress, most existing works on personalized LLMs have focused either entirely on (a) personalized text generation or (b) leveraging LLMs for personalization-related downstream applications, such as recommendation systems. In this work, we bridge the gap between these two separate main directions for the first time by introducing a taxonomy for personalized LLM usage and summarizing the key differences and challenges. We provide a formalization of the foundations of personalized LLMs that consolidates and expands notions of personalization of LLMs, defining and discussing novel facets of personalization, usage, and desiderata of personalized LLMs. We then unify the literature across these diverse fields and usage scenarios by proposing systematic taxonomies for the granularity of personalization, personalization techniques, datasets, evaluation methods, and applications of personalized LLMs. Finally, we highlight challenges and important open problems that remain to be addressed. By unifying and surveying recent research using the proposed taxonomies, we aim to provide a clear guide to the existing literature and different facets of personalization in LLMs, empowering both researchers and practitioners.
Abstract:This paper investigates the design of a unified search engine to serve multiple retrieval-augmented generation (RAG) agents, each with a distinct task, backbone large language model (LLM), and retrieval-augmentation strategy. We introduce an iterative approach where the search engine generates retrieval results for these RAG agents and gathers feedback on the quality of the retrieved documents during an offline phase. This feedback is then used to iteratively optimize the search engine using a novel expectation-maximization algorithm, with the goal of maximizing each agent's utility function. Additionally, we adapt this approach to an online setting, allowing the search engine to refine its behavior based on real-time individual agents feedback to better serve the results for each of them. Experiments on diverse datasets from the Knowledge-Intensive Language Tasks (KILT) benchmark demonstrates that our approach significantly on average outperforms competitive baselines across 18 RAG models. We also demonstrate that our method effectively ``personalizes'' the retrieval process for each RAG agent based on the collected feedback. Finally, we provide a comprehensive ablation study to explore various aspects of our method.
Abstract:Evaluating the creativity of large language models (LLMs) in story writing is difficult because LLM-generated stories could seemingly look creative but be very similar to some existing stories in their huge and proprietary training corpus. To overcome this challenge, we introduce a novel benchmark dataset with varying levels of prompt specificity: CS4 ($\mathbf{C}$omparing the $\mathbf{S}$kill of $\mathbf{C}$reating $\mathbf{S}$tories by $\mathbf{C}$ontrolling the $\mathbf{S}$ynthesized $\mathbf{C}$onstraint $\mathbf{S}$pecificity). By increasing the number of requirements/constraints in the prompt, we can increase the prompt specificity and hinder LLMs from retelling high-quality narratives in their training data. Consequently, CS4 empowers us to indirectly measure the LLMs' creativity without human annotations. Our experiments on LLaMA, Gemma, and Mistral not only highlight the creativity challenges LLMs face when dealing with highly specific prompts but also reveal that different LLMs perform very differently under different numbers of constraints and achieve different balances between the model's instruction-following ability and narrative coherence. Additionally, our experiments on OLMo suggest that Learning from Human Feedback (LHF) can help LLMs select better stories from their training data but has limited influence in boosting LLMs' ability to produce creative stories that are unseen in the training corpora. The benchmark is released at https://github.com/anirudhlakkaraju/cs4_benchmark.