Abstract:Efficiently acquiring external knowledge and up-to-date information is essential for effective reasoning and text generation in large language models (LLMs). Retrieval augmentation and tool-use training approaches where a search engine is treated as a tool lack complex multi-turn retrieval flexibility or require large-scale supervised data. Prompting advanced LLMs with reasoning capabilities during inference to use search engines is not optimal, since the LLM does not learn how to optimally interact with the search engine. This paper introduces Search-R1, an extension of the DeepSeek-R1 model where the LLM learns -- solely through reinforcement learning (RL) -- to autonomously generate (multiple) search queries during step-by-step reasoning with real-time retrieval. Search-R1 optimizes LLM rollouts with multi-turn search interactions, leveraging retrieved token masking for stable RL training and a simple outcome-based reward function. Experiments on seven question-answering datasets show that Search-R1 improves performance by 26% (Qwen2.5-7B), 21% (Qwen2.5-3B), and 10% (LLaMA3.2-3B) over SOTA baselines. This paper further provides empirical insights into RL optimization methods, LLM choices, and response length dynamics in retrieval-augmented reasoning. The code and model checkpoints are available at https://github.com/PeterGriffinJin/Search-R1.
Abstract:In the era of large models, content generation is gradually shifting to Personalized Generation (PGen), tailoring content to individual preferences and needs. This paper presents the first comprehensive survey on PGen, investigating existing research in this rapidly growing field. We conceptualize PGen from a unified perspective, systematically formalizing its key components, core objectives, and abstract workflows. Based on this unified perspective, we propose a multi-level taxonomy, offering an in-depth review of technical advancements, commonly used datasets, and evaluation metrics across multiple modalities, personalized contexts, and tasks. Moreover, we envision the potential applications of PGen and highlight open challenges and promising directions for future exploration. By bridging PGen research across multiple modalities, this survey serves as a valuable resource for fostering knowledge sharing and interdisciplinary collaboration, ultimately contributing to a more personalized digital landscape.
Abstract:Scaling large language models (LLMs) has shown great potential for improving retrieval model performance; however, previous studies have mainly focused on dense retrieval trained with contrastive loss (CL), neglecting the scaling behavior of other retrieval paradigms and optimization techniques, such as sparse retrieval and knowledge distillation (KD). In this work, we conduct a systematic comparative study on how different retrieval paradigms (sparse vs. dense) and fine-tuning objectives (CL vs. KD vs. their combination) affect retrieval performance across different model scales. Using MSMARCO passages as the training dataset, decoder-only LLMs (Llama-3 series: 1B, 3B, 8B), and a fixed compute budget, we evaluate various training configurations on both in-domain (MSMARCO, TREC DL) and out-of-domain (BEIR) benchmarks. Our key findings reveal that: (1) Scaling behaviors emerge clearly only with CL, where larger models achieve significant performance gains, whereas KD-trained models show minimal improvement, performing similarly across the 1B, 3B, and 8B scales. (2) Sparse retrieval models consistently outperform dense retrieval across both in-domain (MSMARCO, TREC DL) and out-of-domain (BEIR) benchmarks, and they demonstrate greater robustness to imperfect supervised signals. (3) We successfully scale sparse retrieval models with the combination of CL and KD losses at 8B scale, achieving state-of-the-art (SOTA) results in all evaluation sets.
Abstract:Video question answering that requires external knowledge beyond the visual content remains a significant challenge in AI systems. While models can effectively answer questions based on direct visual observations, they often falter when faced with questions requiring broader contextual knowledge. To address this limitation, we investigate knowledge-intensive video question answering (KI-VideoQA) through the lens of multi-modal retrieval-augmented generation, with a particular focus on handling open-ended questions rather than just multiple-choice formats. Our comprehensive analysis examines various retrieval augmentation approaches using cutting-edge retrieval and vision language models, testing both zero-shot and fine-tuned configurations. We investigate several critical dimensions: the interplay between different information sources and modalities, strategies for integrating diverse multi-modal contexts, and the dynamics between query formulation and retrieval result utilization. Our findings reveal that while retrieval augmentation shows promise in improving model performance, its success is heavily dependent on the chosen modality and retrieval methodology. The study also highlights the critical role of query construction and retrieval depth optimization in effective knowledge integration. Through our proposed approach, we achieve a substantial 17.5% improvement in accuracy on multiple choice questions in the KnowIT VQA dataset, establishing new state-of-the-art performance levels.
Abstract:The vast majority of retrieval models depend on vector inner products to produce a relevance score between a query and a document. This naturally limits the expressiveness of the relevance score that can be employed. We propose a new paradigm, instead of producing a vector to represent the query we produce a small neural network which acts as a learned relevance function. This small neural network takes in a representation of the document, in this paper we use a single vector, and produces a scalar relevance score. To produce the little neural network we use a hypernetwork, a network that produce the weights of other networks, as our query encoder or as we call it a Hypencoder. Experiments on in-domain search tasks show that Hypencoder is able to significantly outperform strong dense retrieval models and has higher metrics then reranking models and models an order of magnitude larger. Hypencoder is also shown to generalize well to out-of-domain search tasks. To assess the extent of Hypencoder's capabilities, we evaluate on a set of hard retrieval tasks including tip-of-the-tongue retrieval and instruction-following retrieval tasks and find that the performance gap widens substantially compared to standard retrieval tasks. Furthermore, to demonstrate the practicality of our method we implement an approximate search algorithm and show that our model is able to search 8.8M documents in under 60ms.
Abstract:Evaluating personalized text generated by large language models (LLMs) is challenging, as only the LLM user, i.e., prompt author, can reliably assess the output, but re-engaging the same individuals across studies is infeasible. This paper addresses the challenge of evaluating personalized text generation by introducing ExPerT, an explainable reference-based evaluation framework. ExPerT leverages an LLM to extract atomic aspects and their evidence from the generated and reference texts, match the aspects, and evaluate their alignment based on content and writing style -- two key attributes in personalized text generation. Additionally, ExPerT generates detailed, fine-grained explanations for every step of the evaluation process, enhancing transparency and interpretability. Our experiments demonstrate that ExPerT achieves a 7.2% relative improvement in alignment with human judgments compared to the state-of-the-art text generation evaluation methods. Furthermore, human evaluators rated the usability of ExPerT's explanations at 4.7 out of 5, highlighting its effectiveness in making evaluation decisions more interpretable.
Abstract:This paper presents ICAT, an evaluation framework for measuring coverage of diverse factual information in long-form text generation. ICAT breaks down a long output text into a list of atomic claims and not only verifies each claim through retrieval from a (reliable) knowledge source, but also computes the alignment between the atomic factual claims and various aspects expected to be presented in the output. We study three implementations of the ICAT framework, each with a different assumption on the availability of aspects and alignment method. By adopting data from the diversification task in the TREC Web Track and the ClueWeb corpus, we evaluate the ICAT framework. We demonstrate strong correlation with human judgments and provide comprehensive evaluation across multiple state-of-the-art LLMs. Our framework further offers interpretable and fine-grained analysis of diversity and coverage. Its modular design allows for easy adaptation to different domains and datasets, making it a valuable tool for evaluating the qualitative aspects of long-form responses produced by LLMs.
Abstract:Personalized text generation requires a unique ability of large language models (LLMs) to learn from context that they often do not encounter during their standard training. One way to encourage LLMs to better use personalized context for generating outputs that better align with the user's expectations is to instruct them to reason over the user's past preferences, background knowledge, or writing style. To achieve this, we propose Reasoning-Enhanced Self-Training for Personalized Text Generation (REST-PG), a framework that trains LLMs to reason over personal data during response generation. REST-PG first generates reasoning paths to train the LLM's reasoning abilities and then employs Expectation-Maximization Reinforced Self-Training to iteratively train the LLM based on its own high-reward outputs. We evaluate REST-PG on the LongLaMP benchmark, consisting of four diverse personalized long-form text generation tasks. Our experiments demonstrate that REST-PG achieves significant improvements over state-of-the-art baselines, with an average relative performance gain of 14.5% on the benchmark.
Abstract:An evolving solution to address hallucination and enhance accuracy in large language models (LLMs) is Retrieval-Augmented Generation (RAG), which involves augmenting LLMs with information retrieved from an external knowledge source, such as the web. This paper profiles several RAG execution pipelines and demystifies the complex interplay between their retrieval and generation phases. We demonstrate that while exact retrieval schemes are expensive, they can reduce inference time compared to approximate retrieval variants because an exact retrieval model can send a smaller but more accurate list of documents to the generative model while maintaining the same end-to-end accuracy. This observation motivates the acceleration of the exact nearest neighbor search for RAG. In this work, we design Intelligent Knowledge Store (IKS), a type-2 CXL device that implements a scale-out near-memory acceleration architecture with a novel cache-coherent interface between the host CPU and near-memory accelerators. IKS offers 13.4-27.9x faster exact nearest neighbor search over a 512GB vector database compared with executing the search on Intel Sapphire Rapids CPUs. This higher search performance translates to 1.7-26.3x lower end-to-end inference time for representative RAG applications. IKS is inherently a memory expander; its internal DRAM can be disaggregated and used for other applications running on the server to prevent DRAM, which is the most expensive component in today's servers, from being stranded.
Abstract:In the fast-evolving field of information retrieval (IR), the integration of generative AI technologies such as large language models (LLMs) is transforming how users search for and interact with information. Recognizing this paradigm shift at the intersection of IR and generative AI (IR-GenAI), a visioning workshop supported by the Computing Community Consortium (CCC) was held in July 2024 to discuss the future of IR in the age of generative AI. This workshop convened 44 experts in information retrieval, natural language processing, human-computer interaction, and artificial intelligence from academia, industry, and government to explore how generative AI can enhance IR and vice versa, and to identify the major challenges and opportunities in this rapidly advancing field. This report contains a summary of discussions as potentially important research topics and contains a list of recommendations for academics, industry practitioners, institutions, evaluation campaigns, and funding agencies.