Abstract:This paper investigates the design of a unified search engine to serve multiple retrieval-augmented generation (RAG) agents, each with a distinct task, backbone large language model (LLM), and retrieval-augmentation strategy. We introduce an iterative approach where the search engine generates retrieval results for these RAG agents and gathers feedback on the quality of the retrieved documents during an offline phase. This feedback is then used to iteratively optimize the search engine using a novel expectation-maximization algorithm, with the goal of maximizing each agent's utility function. Additionally, we adapt this approach to an online setting, allowing the search engine to refine its behavior based on real-time individual agents feedback to better serve the results for each of them. Experiments on diverse datasets from the Knowledge-Intensive Language Tasks (KILT) benchmark demonstrates that our approach significantly on average outperforms competitive baselines across 18 RAG models. We also demonstrate that our method effectively ``personalizes'' the retrieval process for each RAG agent based on the collected feedback. Finally, we provide a comprehensive ablation study to explore various aspects of our method.
Abstract:Privacy-preserving methods for personalizing large language models (LLMs) are relatively under-explored. There are two schools of thought on this topic: (1) generating personalized outputs by personalizing the input prompt through retrieval augmentation from the user's personal information (RAG-based methods), and (2) parameter-efficient fine-tuning of LLMs per user that considers efficiency and space limitations (PEFT-based methods). This paper presents the first systematic comparison between two approaches on a wide range of personalization tasks using seven diverse datasets. Our results indicate that RAG-based and PEFT-based personalization methods on average yield 14.92% and 1.07% improvements over the non-personalized LLM, respectively. We find that combining RAG with PEFT elevates these improvements to 15.98%. Additionally, we identify a positive correlation between the amount of user data and PEFT's effectiveness, indicating that RAG is a better choice for cold-start users (i.e., user's with limited personal data).
Abstract:In the field of language modeling, models augmented with retrieval components have emerged as a promising solution to address several challenges faced in the natural language processing (NLP) field, including knowledge grounding, interpretability, and scalability. Despite the primary focus on NLP, we posit that the paradigm of retrieval-enhancement can be extended to a broader spectrum of machine learning (ML) such as computer vision, time series prediction, and computational biology. Therefore, this work introduces a formal framework of this paradigm, Retrieval-Enhanced Machine Learning (REML), by synthesizing the literature in various domains in ML with consistent notations which is missing from the current literature. Also, we found that while a number of studies employ retrieval components to augment their models, there is a lack of integration with foundational Information Retrieval (IR) research. We bridge this gap between the seminal IR research and contemporary REML studies by investigating each component that comprises the REML framework. Ultimately, the goal of this work is to equip researchers across various disciplines with a comprehensive, formally structured framework of retrieval-enhanced models, thereby fostering interdisciplinary future research.
Abstract:This paper introduces uRAG--a framework with a unified retrieval engine that serves multiple downstream retrieval-augmented generation (RAG) systems. Each RAG system consumes the retrieval results for a unique purpose, such as open-domain question answering, fact verification, entity linking, and relation extraction. We introduce a generic training guideline that standardizes the communication between the search engine and the downstream RAG systems that engage in optimizing the retrieval model. This lays the groundwork for us to build a large-scale experimentation ecosystem consisting of 18 RAG systems that engage in training and 18 unknown RAG systems that use the uRAG as the new users of the search engine. Using this experimentation ecosystem, we answer a number of fundamental research questions that improve our understanding of promises and challenges in developing search engines for machines.
Abstract:Evaluating retrieval-augmented generation (RAG) presents challenges, particularly for retrieval models within these systems. Traditional end-to-end evaluation methods are computationally expensive. Furthermore, evaluation of the retrieval model's performance based on query-document relevance labels shows a small correlation with the RAG system's downstream performance. We propose a novel evaluation approach, eRAG, where each document in the retrieval list is individually utilized by the large language model within the RAG system. The output generated for each document is then evaluated based on the downstream task ground truth labels. In this manner, the downstream performance for each document serves as its relevance label. We employ various downstream task metrics to obtain document-level annotations and aggregate them using set-based or ranking metrics. Extensive experiments on a wide range of datasets demonstrate that eRAG achieves a higher correlation with downstream RAG performance compared to baseline methods, with improvements in Kendall's $\tau$ correlation ranging from 0.168 to 0.494. Additionally, eRAG offers significant computational advantages, improving runtime and consuming up to 50 times less GPU memory than end-to-end evaluation.
Abstract:This paper studies retrieval-augmented approaches for personalizing large language models (LLMs), which potentially have a substantial impact on various applications and domains. We propose the first attempt to optimize the retrieval models that deliver a limited number of personal documents to large language models for the purpose of personalized generation. We develop two optimization algorithms that solicit feedback from the downstream personalized generation tasks for retrieval optimization--one based on reinforcement learning whose reward function is defined using any arbitrary metric for personalized generation and another based on knowledge distillation from the downstream LLM to the retrieval model. This paper also introduces a pre- and post-generation retriever selection model that decides what retriever to choose for each LLM input. Extensive experiments on diverse tasks from the language model personalization (LaMP) benchmark reveal statistically significant improvements in six out of seven datasets.
Abstract:This paper studies a category of visual question answering tasks, in which accessing external knowledge is necessary for answering the questions. This category is called outside-knowledge visual question answering (OK-VQA). A major step in developing OK-VQA systems is to retrieve relevant documents for the given multi-modal query. Current state-of-the-art asymmetric dense retrieval model for this task uses an architecture with a multi-modal query encoder and a uni-modal document encoder. Such an architecture requires a large amount of training data for effective performance. We propose an automatic data generation pipeline for pre-training passage retrieval models for OK-VQA tasks. The proposed approach leads to 26.9% Precision@5 improvements compared to the current state-of-the-art asymmetric architecture. Additionally, the proposed pre-training approach exhibits a good ability in zero-shot retrieval scenarios.
Abstract:Knowledge-Intensive Visual Question Answering (KI-VQA) refers to answering a question about an image whose answer does not lie in the image. This paper presents a new pipeline for KI-VQA tasks, consisting of a retriever and a reader. First, we introduce DEDR, a symmetric dual encoding dense retrieval framework in which documents and queries are encoded into a shared embedding space using uni-modal (textual) and multi-modal encoders. We introduce an iterative knowledge distillation approach that bridges the gap between the representation spaces in these two encoders. Extensive evaluation on two well-established KI-VQA datasets, i.e., OK-VQA and FVQA, suggests that DEDR outperforms state-of-the-art baselines by 11.6% and 30.9% on OK-VQA and FVQA, respectively. Utilizing the passages retrieved by DEDR, we further introduce MM-FiD, an encoder-decoder multi-modal fusion-in-decoder model, for generating a textual answer for KI-VQA tasks. MM-FiD encodes the question, the image, and each retrieved passage separately and uses all passages jointly in its decoder. Compared to competitive baselines in the literature, this approach leads to 5.5% and 8.5% improvements in terms of question answering accuracy on OK-VQA and FVQA, respectively.
Abstract:This paper highlights the importance of personalization in the current state of natural language understanding and generation and introduces the LaMP benchmark -- a novel benchmark for training and evaluating language models for producing personalized outputs. LaMP offers a comprehensive evaluation framework with diverse language tasks and multiple entries for each user profile. It consists of seven personalized tasks, spanning three classification and four text generation tasks. We also propose a retrieval augmentation approach that retrieves personalized items from user profiles to construct personalized prompts for large language models. Our baseline zero-shot and fine-tuned model results indicate that LMs utilizing profile augmentation outperform their counterparts that do not factor in profile information.
Abstract:Multilingual pre-training significantly improves many multilingual NLP tasks, including machine translation. Most existing methods are based on some variants of masked language modeling and text-denoising objectives on monolingual data. Multilingual pre-training on monolingual data ignores the availability of parallel data in many language pairs. Also, some other works integrate the available human-generated parallel translation data in their pre-training. This kind of parallel data is definitely helpful, but it is limited even in high-resource language pairs. This paper introduces a novel semi-supervised method, SPDG, that generates high-quality pseudo-parallel data for multilingual pre-training. First, a denoising model is pre-trained on monolingual data to reorder, add, remove, and substitute words, enhancing the pre-training documents' quality. Then, we generate different pseudo-translations for each pre-training document using dictionaries for word-by-word translation and applying the pre-trained denoising model. The resulting pseudo-parallel data is then used to pre-train our multilingual sequence-to-sequence model, PEACH. Our experiments show that PEACH outperforms existing approaches used in training mT5 and mBART on various translation tasks, including supervised, zero- and few-shot scenarios. Moreover, PEACH's ability to transfer knowledge between similar languages makes it particularly useful for low-resource languages. Our results demonstrate that with high-quality dictionaries for generating accurate pseudo-parallel, PEACH can be valuable for low-resource languages.