Abstract:Rerankers, typically cross-encoders, are often used to re-score the documents retrieved by cheaper initial IR systems. This is because, though expensive, rerankers are assumed to be more effective. We challenge this assumption by measuring reranker performance for full retrieval, not just re-scoring first-stage retrieval. Our experiments reveal a surprising trend: the best existing rerankers provide diminishing returns when scoring progressively more documents and actually degrade quality beyond a certain limit. In fact, in this setting, rerankers can frequently assign high scores to documents with no lexical or semantic overlap with the query. We hope that our findings will spur future research to improve reranking.
Abstract:In the field of language modeling, models augmented with retrieval components have emerged as a promising solution to address several challenges faced in the natural language processing (NLP) field, including knowledge grounding, interpretability, and scalability. Despite the primary focus on NLP, we posit that the paradigm of retrieval-enhancement can be extended to a broader spectrum of machine learning (ML) such as computer vision, time series prediction, and computational biology. Therefore, this work introduces a formal framework of this paradigm, Retrieval-Enhanced Machine Learning (REML), by synthesizing the literature in various domains in ML with consistent notations which is missing from the current literature. Also, we found that while a number of studies employ retrieval components to augment their models, there is a lack of integration with foundational Information Retrieval (IR) research. We bridge this gap between the seminal IR research and contemporary REML studies by investigating each component that comprises the REML framework. Ultimately, the goal of this work is to equip researchers across various disciplines with a comprehensive, formally structured framework of retrieval-enhanced models, thereby fostering interdisciplinary future research.
Abstract:We study semi-supervised sequence prediction tasks where labeled data are too scarce to effectively finetune a model and at the same time few-shot prompting of a large language model (LLM) has suboptimal performance. This happens when a task, such as parsing, is expensive to annotate and also unfamiliar to a pretrained LLM. In this paper, we present a discovery that student models distilled from a prompted LLM can often generalize better than their teacher on such tasks. Leveraging this finding, we propose a new distillation method, multistage collaborative knowledge distillation from an LLM (MCKD), for such tasks. MCKD first prompts an LLM using few-shot in-context learning to produce pseudolabels for unlabeled data. Then, at each stage of distillation, a pair of students are trained on disjoint partitions of the pseudolabeled data. Each student subsequently produces new and improved pseudolabels for the unseen partition to supervise the next round of student(s) with. We show the benefit of multistage cross-partition labeling on two constituency parsing tasks. On CRAFT biomedical parsing, 3-stage MCKD with 50 labeled examples matches the performance of supervised finetuning with 500 examples and outperforms the prompted LLM and vanilla KD by 7.5% and 3.7% parsing F1, respectively.
Abstract:Recent studies show that large language models (LLMs) can be instructed to effectively perform zero-shot passage re-ranking, in which the results of a first stage retrieval method, such as BM25, are rated and reordered to improve relevance. In this work, we improve LLM-based re-ranking by algorithmically selecting few-shot demonstrations to include in the prompt. Our analysis investigates the conditions where demonstrations are most helpful, and shows that adding even one demonstration is significantly beneficial. We propose a novel demonstration selection strategy based on difficulty rather than the commonly used semantic similarity. Furthermore, we find that demonstrations helpful for ranking are also effective at question generation. We hope our work will spur more principled research into question generation and passage ranking.
Abstract:In this paper, we study the generation quality of interpolation-based retrieval-augmented language models (LMs). These methods, best exemplified by the KNN-LM, interpolate the LM's predicted distribution of the next word with a distribution formed from the most relevant retrievals for a given prefix. While the KNN-LM and related methods yield impressive decreases in perplexity, we discover that they do not exhibit corresponding improvements in open-ended generation quality, as measured by both automatic evaluation metrics (e.g., MAUVE) and human evaluations. Digging deeper, we find that interpolating with a retrieval distribution actually increases perplexity compared to a baseline Transformer LM for the majority of tokens in the WikiText-103 test set, even though the overall perplexity is lower due to a smaller number of tokens for which perplexity dramatically decreases after interpolation. However, when decoding a long sequence at inference time, significant improvements on this smaller subset of tokens are washed out by slightly worse predictions on most tokens. Furthermore, we discover that the entropy of the retrieval distribution increases faster than that of the base LM as the generated sequence becomes longer, which indicates that retrieval is less reliable when using model-generated text as queries (i.e., is subject to exposure bias). We hope that our analysis spurs future work on improved decoding algorithms and interpolation strategies for retrieval-augmented language models.
Abstract:Retrieval-enhanced language models (LMs), which condition their predictions on text retrieved from large external datastores, have recently shown significant perplexity improvements compared to standard LMs. One such approach, the $k$NN-LM, interpolates any existing LM's predictions with the output of a $k$-nearest neighbors model and requires no additional training. In this paper, we explore the importance of lexical and semantic matching in the context of items retrieved by $k$NN-LM. We find two trends: (1) the presence of large overlapping $n$-grams between the datastore and evaluation set plays an important factor in strong performance, even when the datastore is derived from the training data; and (2) the $k$NN-LM is most beneficial when retrieved items have high semantic similarity with the query. Based on our analysis, we define a new formulation of the $k$NN-LM that uses retrieval quality to assign the interpolation coefficient. We empirically measure the effectiveness of our approach on two English language modeling datasets, Wikitext-103 and PG-19. Our re-formulation of the $k$NN-LM is beneficial in both cases, and leads to nearly 4% improvement in perplexity on the Wikitext-103 test set.
Abstract:Humans can reason compositionally when presented with new tasks. Previous research shows that appropriate prompting techniques enable large language models (LLMs) to solve artificial compositional generalization tasks such as SCAN. In this work, we identify additional challenges in more realistic semantic parsing tasks with larger vocabulary and refine these prompting techniques to address them. Our best method is based on least-to-most prompting: it decomposes the problem using prompting-based syntactic parsing, then uses this decomposition to select appropriate exemplars and to sequentially generate the semantic parse. This method allows us to set a new state of the art for CFQ while requiring only 1% of the training data used by traditional approaches. Due to the general nature of our approach, we expect similar efforts will lead to new results in other tasks and domains, especially for knowledge-intensive applications.
Abstract:Transition-based parsers for Abstract Meaning Representation (AMR) rely on node-to-word alignments. These alignments are learned separately from parser training and require a complex pipeline of rule-based components, pre-processing, and post-processing to satisfy domain-specific constraints. Parsers also train on a point-estimate of the alignment pipeline, neglecting the uncertainty due to the inherent ambiguity of alignment. In this work we explore two avenues for overcoming these limitations. First, we propose a neural aligner for AMR that learns node-to-word alignments without relying on complex pipelines. We subsequently explore a tighter integration of aligner and parser training by considering a distribution over oracle action sequences arising from aligner uncertainty. Empirical results show this approach leads to more accurate alignments and generalization better from the AMR2.0 to AMR3.0 corpora. We attain a new state-of-the art for gold-only trained models, matching silver-trained performance without the need for beam search on AMR3.0.
Abstract:For over thirty years, researchers have developed and analyzed methods for latent tree induction as an approach for unsupervised syntactic parsing. Nonetheless, modern systems still do not perform well enough compared to their supervised counterparts to have any practical use as structural annotation of text. In this work, we present a technique that uses distant supervision in the form of span constraints (i.e. phrase bracketing) to improve performance in unsupervised constituency parsing. Using a relatively small number of span constraints we can substantially improve the output from DIORA, an already competitive unsupervised parsing system. Compared with full parse tree annotation, span constraints can be acquired with minimal effort, such as with a lexicon derived from Wikipedia, to find exact text matches. Our experiments show span constraints based on entities improves constituency parsing on English WSJ Penn Treebank by more than 5 F1. Furthermore, our method extends to any domain where span constraints are easily attainable, and as a case study we demonstrate its effectiveness by parsing biomedical text from the CRAFT dataset.
Abstract:We introduce deep inside-outside recursive autoencoders (DIORA), a fully-unsupervised method for discovering syntax that simultaneously learns representations for constituents within the induced tree. Our approach predicts each word in an input sentence conditioned on the rest of the sentence and uses inside-outside dynamic programming to consider all possible binary trees over the sentence. At test time the CKY algorithm extracts the highest scoring parse. DIORA achieves a new state-of-the-art F1 in unsupervised binary constituency parsing (unlabeled) in two benchmark datasets, WSJ and MultiNLI.