Abstract:Text-to-Image (TTI) systems often support people during ideation, the early stages of a creative process when exposure to a broad set of relevant images can help explore the design space. Since ideation is an important subclass of TTI tasks, understanding how to quantitatively evaluate TTI systems according to how well they support ideation is crucial to promoting research and development for these users. However, existing evaluation metrics for TTI remain focused on distributional similarity metrics like Fr\'echet Inception Distance (FID). We take an alternative approach and, based on established methods from ranking evaluation, develop TTI evaluation metrics with explicit models of how users browse and interact with sets of spatially arranged generated images. Our proposed offline evaluation metrics for TTI not only capture how relevant generated images are with respect to the user's ideation need but also take into consideration the diversity and arrangement of the set of generated images. We analyze our proposed family of TTI metrics using human studies on image grids generated by three different TTI systems based on subsets of the widely used benchmarks such as MS-COCO captions and Localized Narratives as well as prompts used in naturalistic settings. Our results demonstrate that grounding metrics in how people use systems is an important and understudied area of benchmark design.
Abstract:Traditional evaluation of information access systems has focused primarily on average utility across a set of information needs (information retrieval) or users (recommender systems). In this work, we argue that evaluating only with average metric measurements assumes utilitarian values not aligned with traditions of information access based on equal access. We advocate for pessimistic evaluation of information access systems focusing on worst case utility. These methods are (a) grounded in ethical and pragmatic concepts, (b) theoretically complementary to existing robustness and fairness methods, and (c) empirically validated across a set of retrieval and recommendation tasks. These results suggest that pessimistic evaluation should be included in existing experimentation processes to better understand the behavior of systems, especially when concerned with principles of social good.
Abstract:Many language models now enhance their responses with retrieval capabilities, leading to the widespread adoption of retrieval-augmented generation (RAG) systems. However, despite retrieval being a core component of RAG, much of the research in this area overlooks the extensive body of work on fair ranking, neglecting the importance of considering all stakeholders involved. This paper presents the first systematic evaluation of RAG systems integrated with fair rankings. We focus specifically on measuring the fair exposure of each relevant item across the rankings utilized by RAG systems (i.e., item-side fairness), aiming to promote equitable growth for relevant item providers. To gain a deep understanding of the relationship between item-fairness, ranking quality, and generation quality in the context of RAG, we analyze nine different RAG systems that incorporate fair rankings across seven distinct datasets. Our findings indicate that RAG systems with fair rankings can maintain a high level of generation quality and, in many cases, even outperform traditional RAG systems, despite the general trend of a tradeoff between ensuring fairness and maintaining system-effectiveness. We believe our insights lay the groundwork for responsible and equitable RAG systems and open new avenues for future research. We publicly release our codebase and dataset at https://github.com/kimdanny/Fair-RAG.
Abstract:In the field of language modeling, models augmented with retrieval components have emerged as a promising solution to address several challenges faced in the natural language processing (NLP) field, including knowledge grounding, interpretability, and scalability. Despite the primary focus on NLP, we posit that the paradigm of retrieval-enhancement can be extended to a broader spectrum of machine learning (ML) such as computer vision, time series prediction, and computational biology. Therefore, this work introduces a formal framework of this paradigm, Retrieval-Enhanced Machine Learning (REML), by synthesizing the literature in various domains in ML with consistent notations which is missing from the current literature. Also, we found that while a number of studies employ retrieval components to augment their models, there is a lack of integration with foundational Information Retrieval (IR) research. We bridge this gap between the seminal IR research and contemporary REML studies by investigating each component that comprises the REML framework. Ultimately, the goal of this work is to equip researchers across various disciplines with a comprehensive, formally structured framework of retrieval-enhanced models, thereby fostering interdisciplinary future research.
Abstract:Productive interactions between diverse users and language technologies require outputs from the latter to be culturally relevant and sensitive. Prior works have evaluated models' knowledge of cultural norms, values, and artifacts, without considering how this knowledge manifests in downstream applications. In this work, we focus on extrinsic evaluation of cultural competence in two text generation tasks, open-ended question answering and story generation. We quantitatively and qualitatively evaluate model outputs when an explicit cue of culture, specifically nationality, is perturbed in the prompts. Although we find that model outputs do vary when varying nationalities and feature culturally relevant words, we also find weak correlations between text similarity of outputs for different countries and the cultural values of these countries. Finally, we discuss important considerations in designing comprehensive evaluation of cultural competence in user-facing tasks.
Abstract:Accurate modeling of the diverse and dynamic interests of users remains a significant challenge in the design of personalized recommender systems. Existing user modeling methods, like single-point and multi-point representations, have limitations w.r.t. accuracy, diversity, computational cost, and adaptability. To overcome these deficiencies, we introduce density-based user representations (DURs), a novel model that leverages Gaussian process regression for effective multi-interest recommendation and retrieval. Our approach, GPR4DUR, exploits DURs to capture user interest variability without manual tuning, incorporates uncertainty-awareness, and scales well to large numbers of users. Experiments using real-world offline datasets confirm the adaptability and efficiency of GPR4DUR, while online experiments with simulated users demonstrate its ability to address the exploration-exploitation trade-off by effectively utilizing model uncertainty.
Abstract:Current practice for evaluating recommender systems typically focuses on point estimates of user-oriented effectiveness metrics or business metrics, sometimes combined with additional metrics for considerations such as diversity and novelty. In this paper, we argue for the need for researchers and practitioners to attend more closely to various distributions that arise from a recommender system (or other information access system) and the sources of uncertainty that lead to these distributions. One immediate implication of our argument is that both researchers and practitioners must report and examine more thoroughly the distribution of utility between and within different stakeholder groups. However, distributions of various forms arise in many more aspects of the recommender systems experimental process, and distributional thinking has substantial ramifications for how we design, evaluate, and present recommender systems evaluation and research results. Leveraging and emphasizing distributions in the evaluation of recommender systems is a necessary step to ensure that the systems provide appropriate and equitably-distributed benefit to the people they affect.
Abstract:As online music platforms grow, music recommender systems play a vital role in helping users navigate and discover content within their vast musical databases. At odds with this larger goal, is the presence of popularity bias, which causes algorithmic systems to favor mainstream content over, potentially more relevant, but niche items. In this work we explore the intrinsic relationship between music discovery and popularity bias. To mitigate this issue we propose a domain-aware, individual fairness-based approach which addresses popularity bias in graph neural network (GNNs) based recommender systems. Our approach uses individual fairness to reflect a ground truth listening experience, i.e., if two songs sound similar, this similarity should be reflected in their representations. In doing so, we facilitate meaningful music discovery that is robust to popularity bias and grounded in the music domain. We apply our BOOST methodology to two discovery based tasks, performing recommendations at both the playlist level and user level. Then, we ground our evaluation in the cold start setting, showing that our approach outperforms existing fairness benchmarks in both performance and recommendation of lesser-known content. Finally, our analysis explains why our proposed methodology is a novel and promising approach to mitigating popularity bias and improving the discovery of new and niche content in music recommender systems.
Abstract:When learning to rank from user interactions, search and recommendation systems must address biases in user behavior to provide a high-quality ranking. One type of bias that has recently been studied in the ranking literature is when sensitive attributes, such as gender, have an impact on a user's judgment about an item's utility. For example, in a search for an expertise area, some users may be biased towards clicking on male candidates over female candidates. We call this type of bias group membership bias or group bias for short. Increasingly, we seek rankings that not only have high utility but are also fair to individuals and sensitive groups. Merit-based fairness measures rely on the estimated merit or utility of the items. With group bias, the utility of the sensitive groups is under-estimated, hence, without correcting for this bias, a supposedly fair ranking is not truly fair. In this paper, first, we analyze the impact of group bias on ranking quality as well as two well-known merit-based fairness metrics and show that group bias can hurt both ranking and fairness. Then, we provide a correction method for group bias that is based on the assumption that the utility score of items in different groups comes from the same distribution. This assumption has two potential issues of sparsity and equality-instead-of-equity, which we use an amortized approach to solve. We show that our correction method can consistently compensate for the negative impact of group bias on ranking quality and fairness metrics.
Abstract:Recent work has proposed a power law relationship, referred to as ``scaling laws,'' between the performance of artificial intelligence (AI) models and aspects of those models' design (e.g., dataset size). In other words, as the size of a dataset (or model parameters, etc) increases, the performance of a given model trained on that dataset will correspondingly increase. However, while compelling in the aggregate, this scaling law relationship overlooks the ways that metrics used to measure performance may be precarious and contested, or may not correspond with how different groups of people may perceive the quality of models' output. In this paper, we argue that as the size of datasets used to train large AI models grows, the number of distinct communities (including demographic groups) whose data is included in a given dataset is likely to grow, each of whom may have different values. As a result, there is an increased risk that communities represented in a dataset may have values or preferences not captured by (or in the worst case, at odds with) the metrics used to evaluate model performance for scaling laws. We end the paper with implications for AI scaling laws -- that models may not, in fact, continue to improve as the datasets get larger -- at least not for all people or communities impacted by those models.