Abstract:Text-to-Image (TTI) systems often support people during ideation, the early stages of a creative process when exposure to a broad set of relevant images can help explore the design space. Since ideation is an important subclass of TTI tasks, understanding how to quantitatively evaluate TTI systems according to how well they support ideation is crucial to promoting research and development for these users. However, existing evaluation metrics for TTI remain focused on distributional similarity metrics like Fr\'echet Inception Distance (FID). We take an alternative approach and, based on established methods from ranking evaluation, develop TTI evaluation metrics with explicit models of how users browse and interact with sets of spatially arranged generated images. Our proposed offline evaluation metrics for TTI not only capture how relevant generated images are with respect to the user's ideation need but also take into consideration the diversity and arrangement of the set of generated images. We analyze our proposed family of TTI metrics using human studies on image grids generated by three different TTI systems based on subsets of the widely used benchmarks such as MS-COCO captions and Localized Narratives as well as prompts used in naturalistic settings. Our results demonstrate that grounding metrics in how people use systems is an important and understudied area of benchmark design.
Abstract:Seamless interaction between AI agents and humans using natural language remains a key goal in AI research. This paper addresses the challenges of developing interactive agents capable of understanding and executing grounded natural language instructions through the IGLU competition at NeurIPS. Despite advancements, challenges such as a scarcity of appropriate datasets and the need for effective evaluation platforms persist. We introduce a scalable data collection tool for gathering interactive grounded language instructions within a Minecraft-like environment, resulting in a Multi-Modal dataset with around 9,000 utterances and over 1,000 clarification questions. Additionally, we present a Human-in-the-Loop interactive evaluation platform for qualitative analysis and comparison of agent performance through multi-turn communication with human annotators. We offer to the community these assets referred to as IDAT (IGLU Dataset And Toolkit) which aim to advance the development of intelligent, interactive AI agents and provide essential resources for further research.
Abstract:The rapid development of Large Language Models (LLMs) has led to a surge in applications that facilitate collaboration among multiple agents, assisting humans in their daily tasks. However, a significant gap remains in assessing to what extent LLM-powered applications genuinely enhance user experience and task execution efficiency. This highlights the need to verify utility of LLM-powered applications, particularly by ensuring alignment between the application's functionality and end-user needs. We introduce AgentEval, a novel framework designed to simplify the utility verification process by automatically proposing a set of criteria tailored to the unique purpose of any given application. This allows for a comprehensive assessment, quantifying the utility of an application against the suggested criteria. We present a comprehensive analysis of the effectiveness and robustness of AgentEval for two open source datasets including Math Problem solving and ALFWorld House-hold related tasks. For reproducibility purposes, we make the data, code and all the logs publicly available at https://bit.ly/3w3yKcS .
Abstract:We study ranked list truncation (RLT) from a novel "retrieve-then-re-rank" perspective, where we optimize re-ranking by truncating the retrieved list (i.e., trim re-ranking candidates). RLT is crucial for re-ranking as it can improve re-ranking efficiency by sending variable-length candidate lists to a re-ranker on a per-query basis. It also has the potential to improve re-ranking effectiveness. Despite its importance, there is limited research into applying RLT methods to this new perspective. To address this research gap, we reproduce existing RLT methods in the context of re-ranking, especially newly emerged large language model (LLM)-based re-ranking. In particular, we examine to what extent established findings on RLT for retrieval are generalizable to the "retrieve-then-re-rank" setup from three perspectives: (i) assessing RLT methods in the context of LLM-based re-ranking with lexical first-stage retrieval, (ii) investigating the impact of different types of first-stage retrievers on RLT methods, and (iii) investigating the impact of different types of re-rankers on RLT methods. We perform experiments on the TREC 2019 and 2020 deep learning tracks, investigating 8 RLT methods for pipelines involving 3 retrievers and 2 re-rankers. We reach new insights into RLT methods in the context of re-ranking.
Abstract:In this chapter, we consider generative information retrieval evaluation from two distinct but interrelated perspectives. First, large language models (LLMs) themselves are rapidly becoming tools for evaluation, with current research indicating that LLMs may be superior to crowdsource workers and other paid assessors on basic relevance judgement tasks. We review past and ongoing related research, including speculation on the future of shared task initiatives, such as TREC, and a discussion on the continuing need for human assessments. Second, we consider the evaluation of emerging LLM-based generative information retrieval (GenIR) systems, including retrieval augmented generation (RAG) systems. We consider approaches that focus both on the end-to-end evaluation of GenIR systems and on the evaluation of a retrieval component as an element in a RAG system. Going forward, we expect the evaluation of GenIR systems to be at least partially based on LLM-based assessment, creating an apparent circularity, with a system seemingly evaluating its own output. We resolve this apparent circularity in two ways: 1) by viewing LLM-based assessment as a form of "slow search", where a slower IR system is used for evaluation and training of a faster production IR system; and 2) by recognizing a continuing need to ground evaluation in human assessment, even if the characteristics of that human assessment must change.
Abstract:Information retrieval systems increasingly incorporate generative components. For example, in a retrieval augmented generation (RAG) system, a retrieval component might provide a source of ground truth, while a generative component summarizes and augments its responses. In other systems, a large language model (LLM) might directly generate responses without consulting a retrieval component. While there are multiple definitions of generative information retrieval (Gen-IR) systems, in this paper we focus on those systems where the system's response is not drawn from a fixed collection of documents or passages. The response to a query may be entirely new text. Since traditional IR evaluation methods break down under this model, we explore various methods that extend traditional offline evaluation approaches to the Gen-IR context. Offline IR evaluation traditionally employs paid human assessors, but increasingly LLMs are replacing human assessment, demonstrating capabilities similar or superior to crowdsourced labels. Given that Gen-IR systems do not generate responses from a fixed set, we assume that methods for Gen-IR evaluation must largely depend on LLM-generated labels. Along with methods based on binary and graded relevance, we explore methods based on explicit subtopics, pairwise preferences, and embeddings. We first validate these methods against human assessments on several TREC Deep Learning Track tasks; we then apply these methods to evaluate the output of several purely generative systems. For each method we consider both its ability to act autonomously, without the need for human labels or other input, and its ability to support human auditing. To trust these methods, we must be assured that their results align with human assessments. In order to do so, evaluation criteria must be transparent, so that outcomes can be audited by human assessors.
Abstract:Query performance prediction (QPP) aims to estimate the retrieval quality of a search system for a query without human relevance judgments. Previous QPP methods typically return a single scalar value and do not require the predicted values to approximate a specific information retrieval (IR) evaluation measure, leading to certain drawbacks: (i) a single scalar is insufficient to accurately represent different IR evaluation measures, especially when metrics do not highly correlate, and (ii) a single scalar limits the interpretability of QPP methods because solely using a scalar is insufficient to explain QPP results. To address these issues, we propose a QPP framework using automatically generated relevance judgments (QPP-GenRE), which decomposes QPP into independent subtasks of judging the relevance of each item in a ranked list to a given query. This allows us to predict any IR evaluation measure using the generated relevance judgments as pseudo-labels; Also, this allows us to interpret predicted IR evaluation measures, and identify, track and rectify errors in generated relevance judgments to improve QPP quality. We judge relevance by leveraging a leading open-source large language model (LLM), LLaMA, to ensure scientific reproducibility. In doing so, we address two main challenges: (i) excessive computational costs of judging the entire corpus for predicting a recall-based metric, and (ii) poor performance in prompting LLaMA in a zero-/few-shot manner. We devise an approximation strategy to predict a recall-oriented IR measure and propose to fine-tune LLaMA using human-labeled relevance judgments. Experiments on the TREC 2019-2022 deep learning tracks show that QPP-GenRE achieves state-of-the-art QPP accuracy for both lexical and neural rankers in both precision- and recall-oriented metrics.
Abstract:The rapid development in the field of Large Language Models (LLMs) has led to a surge in applications that facilitate collaboration among multiple agents to assist humans in their daily tasks. However, a significant gap remains in assessing whether LLM-powered applications genuinely enhance user experience and task execution efficiency. This highlights the pressing need for methods to verify utility of LLM-powered applications, particularly by ensuring alignment between the application's functionality and end-user needs. We introduce AgentEval provides an implementation for the math problems, a novel framework designed to simplify the utility verification process by automatically proposing a set of criteria tailored to the unique purpose of any given application. This allows for a comprehensive assessment, quantifying the utility of an application against the suggested criteria. We present a comprehensive analysis of the robustness of quantifier's work.
Abstract:The rapid advancement of natural language processing, information retrieval (IR), computer vision, and other technologies has presented significant challenges in evaluating the performance of these systems. One of the main challenges is the scarcity of human-labeled data, which hinders the fair and accurate assessment of these systems. In this work, we specifically focus on evaluating IR systems with sparse labels, borrowing from recent research on evaluating computer vision tasks. taking inspiration from the success of using Fr\'echet Inception Distance (FID) in assessing text-to-image generation systems. We propose leveraging the Fr\'echet Distance to measure the distance between the distributions of relevant judged items and retrieved results. Our experimental results on MS MARCO V1 dataset and TREC Deep Learning Tracks query sets demonstrate the effectiveness of the Fr\'echet Distance as a metric for evaluating IR systems, particularly in settings where a few labels are available. This approach contributes to the advancement of evaluation methodologies in real-world scenarios such as the assessment of generative IR systems.
Abstract:Large language models can now directly generate answers to many factual questions without referencing external sources. Unfortunately, relatively little attention has been paid to methods for evaluating the quality and correctness of these answers, for comparing the performance of one model to another, or for comparing one prompt to another. In addition, the quality of generated answers are rarely directly compared to the quality of retrieved answers. As models evolve and prompts are modified, we have no systematic way to measure improvements without resorting to expensive human judgments. To address this problem we adapt standard retrieval benchmarks to evaluate answers generated by large language models. Inspired by the BERTScore metric for summarization, we explore two approaches. In the first, we base our evaluation on the benchmark relevance judgments. We empirically run experiments on how information retrieval relevance judgments can be utilized as an anchor to evaluating the generated answers. In the second, we compare generated answers to the top results retrieved by a diverse set of retrieval models, ranging from traditional approaches to advanced methods, allowing us to measure improvements without human judgments. In both cases, we measure the similarity between an embedded representation of the generated answer and an embedded representation of a known, or assumed, relevant passage from the retrieval benchmark.