Toronto Metropolitan University, Canada
Abstract:Recent research has shown that neural information retrieval techniques may be susceptible to adversarial attacks. Adversarial attacks seek to manipulate the ranking of documents, with the intention of exposing users to targeted content. In this paper, we introduce the Embedding Perturbation Rank Attack (EMPRA) method, a novel approach designed to perform adversarial attacks on black-box Neural Ranking Models (NRMs). EMPRA manipulates sentence-level embeddings, guiding them towards pertinent context related to the query while preserving semantic integrity. This process generates adversarial texts that seamlessly integrate with the original content and remain imperceptible to humans. Our extensive evaluation conducted on the widely-used MS MARCO V1 passage collection demonstrate the effectiveness of EMPRA against a wide range of state-of-the-art baselines in promoting a specific set of target documents within a given ranked results. Specifically, EMPRA successfully achieves a re-ranking of almost 96% of target documents originally ranked between 51-100 to rank within the top 10. Furthermore, EMPRA does not depend on surrogate models for adversarial text generation, enhancing its robustness against different NRMs in realistic settings.
Abstract:Peer review is an integral component of scientific research. The quality of peer review, and consequently the published research, depends to a large extent on the ability to recruit adequate reviewers for submitted papers. However, finding such reviewers is an increasingly difficult task due to several factors, such as the continuous increase both in the production of scientific papers and the workload of scholars. To mitigate these challenges, solutions for automated association of papers with "well matching" reviewers - the task often referred to as reviewer assignment problem (RAP) - have been the subject of research for thirty years now. Even though numerous solutions have been suggested, to our knowledge, a recent systematic synthesis of the RAP-related literature is missing. To fill this gap and support further RAP-related research, in this paper, we present a scoping review of computational approaches for addressing RAP. Following the latest methodological guidance for scoping reviews, we have collected recent literature on RAP from three databases (Scopus, Google Scholar, DBLP) and, after applying the eligibility criteria, retained 26 studies for extracting and synthesising data on several aspects of RAP research including: i) the overall framing of and approach to RAP; ii) the criteria for reviewer selection; iii) the modelling of candidate reviewers and submissions; iv) the computational methods for matching reviewers and submissions; and v) the methods for evaluating the performance of the proposed solutions. The paper summarises and discusses the findings for each of the aforementioned aspects of RAP research and suggests future research directions.
Abstract:Open Information Extraction (Open IE) systems aim to obtain relation tuples with highly scalable extraction in portable across domain by identifying a variety of relation phrases and their arguments in arbitrary sentences. The first generation of Open IE learns linear chain models based on unlexicalized features such as Part-of-Speech (POS) or shallow tags to label the intermediate words between pair of potential arguments for identifying extractable relations. Open IE currently is developed in the second generation that is able to extract instances of the most frequently observed relation types such as Verb, Noun and Prep, Verb and Prep, and Infinitive with deep linguistic analysis. They expose simple yet principled ways in which verbs express relationships in linguistics such as verb phrase-based extraction or clause-based extraction. They obtain a significantly higher performance over previous systems in the first generation. In this paper, we describe an overview of two Open IE generations including strengths, weaknesses and application areas.