Abstract:Simulating user search behavior is a critical task in information retrieval, which can be employed for user behavior modeling, data augmentation, and system evaluation. Recent advancements in large language models (LLMs) have opened up new possibilities for generating human-like actions including querying, browsing, and clicking. In this work, we explore the integration of human-like thinking into search simulations by leveraging LLMs to simulate users' hidden cognitive processes. Specifically, given a search task and context, we prompt LLMs to first think like a human before executing the corresponding action. As existing search datasets do not include users' thought processes, we conducted a user study to collect a new dataset enriched with users' explicit thinking. We investigate the impact of incorporating such human-like thinking on simulation performance and apply supervised fine-tuning (SFT) to teach LLMs to emulate both human thinking and actions. Our experiments span two dimensions in leveraging LLMs for user simulation: (1) with or without explicit thinking, and (2) with or without fine-tuning on the thinking-augmented dataset. The results demonstrate the feasibility and potential of incorporating human-like thinking in user simulations, though performance improvements on some metrics remain modest. We believe this exploration provides new avenues and inspirations for advancing user behavior modeling in search simulations.
Abstract:Due to the advantages in the cost-efficiency and reproducibility, user simulation has become a promising solution to the user-centric evaluation of information retrieval systems. Nonetheless, accurately simulating user search behaviors has long been a challenge, because users' actions in search are highly complex and driven by intricate cognitive processes such as learning, reasoning, and planning. Recently, Large Language Models (LLMs) have demonstrated remarked potential in simulating human-level intelligence and have been used in building autonomous agents for various tasks. However, the potential of using LLMs in simulating search behaviors has not yet been fully explored. In this paper, we introduce a LLM-based user search behavior simulator, USimAgent. The proposed simulator can simulate users' querying, clicking, and stopping behaviors during search, and thus, is capable of generating complete search sessions for specific search tasks. Empirical investigation on a real user behavior dataset shows that the proposed simulator outperforms existing methods in query generation and is comparable to traditional methods in predicting user clicks and stopping behaviors. These results not only validate the effectiveness of using LLMs for user simulation but also shed light on the development of a more robust and generic user simulators.