Abstract:Federated learning (FL) addresses privacy concerns in language modeling by enabling multiple clients to contribute to training language models. However, non-IID (identically and independently distributed) data across clients often limits FL's performance. This issue is especially challenging during model fine-tuning, as noise due to variations in clients' data distributions can harm model convergence near the optimum. This paper proposes a targeted layer update strategy for fine-tuning in FL. Instead of randomly updating layers of the language model, as often done in practice, we use a scoring mechanism to identify and update the most critical layers, avoiding excessively noisy or even poisoned updates by freezing the parameters in other layers. We show in extensive experiments that our method improves convergence and performance in non-IID settings, offering a more efficient approach to fine-tuning federated language models.
Abstract:Federated training methods have gained popularity for graph learning with applications including friendship graphs of social media sites and customer-merchant interaction graphs of huge online marketplaces. However, privacy regulations often require locally generated data to be stored on local clients. The graph is then naturally partitioned across clients, with no client permitted access to information stored on another. Cross-client edges arise naturally in such cases and present an interesting challenge to federated training methods, as training a graph model at one client requires feature information of nodes on the other end of cross-client edges. Attempting to retain such edges often incurs significant communication overhead, and dropping them altogether reduces model performance. In simpler models such as Graph Convolutional Networks, this can be fixed by communicating a limited amount of feature information across clients before training, but GATs (Graph Attention Networks) require additional information that cannot be pre-communicated, as it changes from training round to round. We introduce the Federated Graph Attention Network (FedGAT) algorithm for semi-supervised node classification, which approximates the behavior of GATs with provable bounds on the approximation error. FedGAT requires only one pre-training communication round, significantly reducing the communication overhead for federated GAT training. We then analyze the error in the approximation and examine the communication overhead and computational complexity of the algorithm. Experiments show that FedGAT achieves nearly the same accuracy as a GAT model in a centralised setting, and its performance is robust to the number of clients as well as data distribution.
Abstract:Birth Apshyxia (BA) is a severe condition characterized by insufficient supply of oxygen to a newborn during the delivery. BA is one of the primary causes of neonatal death in the world. Although there has been a decline in neonatal deaths over the past two decades, the developing world, particularly sub-Saharan Africa, continues to experience the highest under-five (<5) mortality rates. While evidence-based methods are commonly used to detect BA in African healthcare settings, they can be subject to physician errors or delays in diagnosis, preventing timely interventions. Centralized Machine Learning (ML) methods demonstrated good performance in early detection of BA but require sensitive health data to leave their premises before training, which does not guarantee privacy and security. Healthcare institutions are therefore reluctant to adopt such solutions in Africa. To address this challenge, we suggest a federated learning (FL)-based software architecture, a distributed learning method that prioritizes privacy and security by design. We have developed a user-friendly and cost-effective mobile application embedding the FL pipeline for early detection of BA. Our Federated SVM model outperformed centralized SVM pipelines and Neural Networks (NN)-based methods in the existing literature
Abstract:Foundation models are now a major focus of leading technology organizations due to their ability to generalize across diverse tasks. Existing approaches for adapting foundation models to new applications often rely on Federated Learning (FL) and disclose the foundation model weights to clients when using it to initialize the global model. While these methods ensure client data privacy, they compromise model and information security. In this paper, we introduce Federated Learning Aggregation Biased by a Foundation Model (FedBaF), a novel method for dynamically integrating pre-trained foundation model weights during the FL aggregation phase. Unlike conventional methods, FedBaF preserves the confidentiality of the foundation model while still leveraging its power to train more accurate models, especially in non-IID and adversarial scenarios. Our comprehensive experiments use Pre-ResNet and foundation models like Vision Transformer to demonstrate that FedBaF not only matches, but often surpasses the test accuracy of traditional weight initialization methods by up to 11.4\% in IID and up to 15.8\% in non-IID settings. Additionally, FedBaF applied to a Transformer-based language model significantly reduced perplexity by up to 39.2\%.
Abstract:Federated learning has recently gained popularity as a framework for distributed clients to collaboratively train a machine learning model using local data. While traditional federated learning relies on a central server for model aggregation, recent advancements adopt a decentralized framework, enabling direct model exchange between clients and eliminating the single point of failure. However, existing decentralized frameworks often assume all clients train a shared model. Personalizing each client's model can enhance performance, especially with heterogeneous client data distributions. We propose FedSPD, an efficient personalized federated learning algorithm for the decentralized setting, and show that it learns accurate models even in low-connectivity networks. To provide theoretical guarantees on convergence, we introduce a clustering-based framework that enables consensus on models for distinct data clusters while personalizing to unique mixtures of these clusters at different clients. This flexibility, allowing selective model updates based on data distribution, substantially reduces communication costs compared to prior work on personalized federated learning in decentralized settings. Experimental results on real-world datasets show that FedSPD outperforms multiple decentralized variants of personalized federated learning algorithms, especially in scenarios with low-connectivity networks.
Abstract:We study a federated version of multi-objective optimization (MOO), where a single model is trained to optimize multiple objective functions. MOO has been extensively studied in the centralized setting but is less explored in federated or distributed settings. We propose FedCMOO, a novel communication-efficient federated multi-objective optimization (FMOO) algorithm that improves the error convergence performance of the model compared to existing approaches. Unlike prior works, the communication cost of FedCMOO does not scale with the number of objectives, as each client sends a single aggregated gradient, obtained using randomized SVD (singular value decomposition), to the central server. We provide a convergence analysis of the proposed method for smooth non-convex objective functions under milder assumptions than in prior work. In addition, we introduce a variant of FedCMOO that allows users to specify a preference over the objectives in terms of a desired ratio of the final objective values. Through extensive experiments, we demonstrate the superiority of our proposed method over baseline approaches.
Abstract:Deep Reinforcement Learning (DRL) algorithms have achieved great success in solving many challenging tasks while their black-box nature hinders interpretability and real-world applicability, making it difficult for human experts to interpret and understand DRL policies. Existing works on interpretable reinforcement learning have shown promise in extracting decision tree (DT) based policies from DRL policies with most focus on the single-agent settings while prior attempts to introduce DT policies in multi-agent scenarios mainly focus on heuristic designs which do not provide any quantitative guarantees on the expected return. In this paper, we establish an upper bound on the return gap between the oracle expert policy and an optimal decision tree policy. This enables us to recast the DT extraction problem into a novel non-euclidean clustering problem over the local observation and action values space of each agent, with action values as cluster labels and the upper bound on the return gap as clustering loss. Both the algorithm and the upper bound are extended to multi-agent decentralized DT extractions by an iteratively-grow-DT procedure guided by an action-value function conditioned on the current DTs of other agents. Further, we propose the Return-Gap-Minimization Decision Tree (RGMDT) algorithm, which is a surprisingly simple design and is integrated with reinforcement learning through the utilization of a novel Regularized Information Maximization loss. Evaluations on tasks like D4RL show that RGMDT significantly outperforms heuristic DT-based baselines and can achieve nearly optimal returns under given DT complexity constraints (e.g., maximum number of DT nodes).
Abstract:We consider the contextual combinatorial bandit setting where in each round, the learning agent, e.g., a recommender system, selects a subset of "arms," e.g., products, and observes rewards for both the individual base arms, which are a function of known features (called "context"), and the super arm (the subset of arms), which is a function of the base arm rewards. The agent's goal is to simultaneously learn the unknown reward functions and choose the highest-reward arms. For example, the "reward" may represent a user's probability of clicking on one of the recommended products. Conventional bandit models, however, employ restrictive reward function models in order to obtain performance guarantees. We make use of deep neural networks to estimate and learn the unknown reward functions and propose Neural UCB Clustering (NeUClust), which adopts a clustering approach to select the super arm in every round by exploiting underlying structure in the context space. Unlike prior neural bandit works, NeUClust uses a neural network to estimate the super arm reward and select the super arm, thus eliminating the need for a known optimization oracle. We non-trivially extend prior neural combinatorial bandit works to prove that NeUClust achieves $\widetilde{O}\left(\widetilde{d}\sqrt{T}\right)$ regret, where $\widetilde{d}$ is the effective dimension of a neural tangent kernel matrix, $T$ the number of rounds. Experiments on real world recommendation datasets show that NeUClust achieves better regret and reward than other contextual combinatorial and neural bandit algorithms.
Abstract:Federated graph learning is an emerging field with significant practical challenges. While many algorithms have been proposed to enhance model accuracy, their system performance, crucial for real-world deployment, is often overlooked. To address this gap, we present FedGraph, a research library designed for practical distributed deployment and benchmarking in federated graph learning. FedGraph supports a range of state-of-the-art methods and includes profiling tools for system performance evaluation, focusing on communication and computation costs during training. FedGraph can then facilitate the development of practical applications and guide the design of future algorithms.
Abstract:Addressing intermittent client availability is critical for the real-world deployment of federated learning algorithms. Most prior work either overlooks the potential non-stationarity in the dynamics of client unavailability or requires substantial memory/computation overhead. We study federated learning in the presence of heterogeneous and non-stationary client availability, which may occur when the deployment environments are uncertain or the clients are mobile. The impacts of the heterogeneity and non-stationarity in client unavailability can be significant, as we illustrate using FedAvg, the most widely adopted federated learning algorithm. We propose FedAPM, which includes novel algorithmic structures that (i) compensate for missed computations due to unavailability with only $O(1)$ additional memory and computation with respect to standard FedAvg, and (ii) evenly diffuse local updates within the federated learning system through implicit gossiping, despite being agnostic to non-stationary dynamics. We show that FedAPM converges to a stationary point of even non-convex objectives while achieving the desired linear speedup property. We corroborate our analysis with numerical experiments over diversified client unavailability dynamics on real-world data sets.