Abstract:Graph Neural Networks (GNNs) have made significant advancements in node classification, but their success relies on sufficient labeled nodes per class in the training data. Real-world graph data often exhibits a long-tail distribution with sparse labels, emphasizing the importance of GNNs' ability in few-shot node classification, which entails categorizing nodes with limited data. Traditional episodic meta-learning approaches have shown promise in this domain, but they face an inherent limitation: it might lead the model to converge to suboptimal solutions because of random and uniform task assignment, ignoring task difficulty levels. This could lead the meta-learner to face complex tasks too soon, hindering proper learning. Ideally, the meta-learner should start with simple concepts and advance to more complex ones, like human learning. So, we introduce CPT, a novel two-stage curriculum learning method that aligns task difficulty with the meta-learner's progressive competence, enhancing overall performance. Specifically, in CPT's initial stage, the focus is on simpler tasks, fostering foundational skills for engaging with complex tasks later. Importantly, the second stage dynamically adjusts task difficulty based on the meta-learner's growing competence, aiming for optimal knowledge acquisition. Extensive experiments on popular node classification datasets demonstrate significant improvements of our strategy over existing methods.
Abstract:Federated Learning (FL) is a distributed learning paradigm that can coordinate heterogeneous edge devices to perform model training without sharing private data. While prior works have focused on analyzing FL convergence with respect to hyperparameters like batch size and aggregation frequency, the joint effects of adjusting these parameters on model performance, training time, and resource consumption have been overlooked, especially when facing dynamic data streams and network characteristics. This paper introduces novel analytical models and optimization algorithms that leverage the interplay between batch size and aggregation frequency to navigate the trade-offs among convergence, cost, and completion time for dynamic FL training. We establish a new convergence bound for training error considering heterogeneous datasets across devices and derive closed-form solutions for co-optimized batch size and aggregation frequency that are consistent across all devices. Additionally, we design an efficient algorithm for assigning different batch configurations across devices, improving model accuracy and addressing the heterogeneity of both data and system characteristics. Further, we propose an adaptive control algorithm that dynamically estimates network states, efficiently samples appropriate data batches, and effectively adjusts batch sizes and aggregation frequency on the fly. Extensive experiments demonstrate the superiority of our offline optimal solutions and online adaptive algorithm.