School of Artificial Intelligence, Sun Yat-sen University, Zhuhai 519082, Guangdong Key Laboratory of Big Data Analysis and Processing, 510006, China
Abstract:Preference alignment in Large Language Models (LLMs) has significantly improved their ability to adhere to human instructions and intentions. However, existing direct alignment algorithms primarily focus on relative preferences and often overlook the qualitative aspects of responses. Striving to maximize the implicit reward gap between the chosen and the slightly inferior rejected responses can cause overfitting and unnecessary unlearning of the high-quality rejected responses. The unawareness of the reward scores also drives the LLM to indiscriminately favor the low-quality chosen responses and fail to generalize to responses with the highest rewards, which are sparse in data. To overcome these shortcomings, our study introduces reward-conditioned LLM policies that discern and learn from the entire spectrum of response quality within the dataset, helping extrapolate to more optimal regions. We propose an effective yet simple data relabeling method that conditions the preference pairs on quality scores to construct a reward-augmented dataset. This dataset is easily integrated with existing direct alignment algorithms and is applicable to any preference dataset. The experimental results across instruction-following benchmarks including AlpacaEval, MT-Bench, and Arena-Hard-Auto demonstrate that our approach consistently boosts the performance of DPO by a considerable margin across diverse models. Additionally, our method improves the average accuracy on various academic benchmarks. When applying our method to on-policy data, the resulting DPO model achieves SOTA results on AlpacaEval. Through ablation studies, we demonstrate that our method not only maximizes the utility of preference data but also mitigates the issue of unlearning, demonstrating its broad effectiveness beyond mere dataset expansion. Our code is available at https://github.com/shenao-zhang/reward-augmented-preference.
Abstract:Large language models (LLMs) have become increasingly pivotal across various domains, especially in handling complex data types. This includes structured data processing, as exemplified by ChartQA and ChatGPT-Ada, and multimodal unstructured data processing as seen in Visual Question Answering (VQA). These areas have attracted significant attention from both industry and academia. Despite this, there remains a lack of unified evaluation methodologies for these diverse data handling scenarios. In response, we introduce BabelBench, an innovative benchmark framework that evaluates the proficiency of LLMs in managing multimodal multistructured data with code execution. BabelBench incorporates a dataset comprising 247 meticulously curated problems that challenge the models with tasks in perception, commonsense reasoning, logical reasoning, and so on. Besides the basic capabilities of multimodal understanding, structured data processing as well as code generation, these tasks demand advanced capabilities in exploration, planning, reasoning and debugging. Our experimental findings on BabelBench indicate that even cutting-edge models like ChatGPT 4 exhibit substantial room for improvement. The insights derived from our comprehensive analysis offer valuable guidance for future research within the community. The benchmark data can be found at https://github.com/FFD8FFE/babelbench.
Abstract:For millimeter-wave (mmWave) non-orthogonal multiple access (NOMA) communication systems, we propose an innovative near-field (NF) transmission framework based on dynamic metasurface antenna (DMA) technology. In this framework, a base station (BS) utilizes the DMA hybrid beamforming technology combined with the NOMA principle to maximize communication efficiency between near-field users (NUs) and far-field users (FUs). In conventional communication systems, obtaining channel state information (CSI) requires substantial pilot signals, significantly reducing system communication efficiency. We propose a beamforming design scheme based on position information to address with this challenge. This scheme does not depend on pilot signals but indirectly obtains CSI by analyzing the geometric relationship between user position information and channel models. However, in practical applications, the accuracy of position information is challenging to guarantee and may contain errors. We propose a robust beamforming design strategy based on the worst-case scenario to tackle this issue. Facing with the multi-variable coupled non-convex problems, we employ a dual-loop iterative joint optimization algorithm to update beamforming using block coordinate descent (BCD) and derive the optimal power allocation (PA) expression. We analyze its convergence and complexity to verify the proposed algorithm's performance and robustness thoroughly. We validate the theoretical derivation of the CSI error bound through simulation experiments. Numerical results show that our proposed scheme performs better than traditional beamforming schemes. Additionally, the transmission framework exhibits strong robustness to NU and FU position errors, laying a solid foundation for the practical application of mmWave NOMA communication systems.
Abstract:Chain-of-thought (CoT) prompting can guide language models to engage in complex multi-step reasoning. The quality of provided demonstrations significantly impacts the success of downstream inference tasks. While existing automated methods prioritize accuracy and semantics in these demonstrations, we show that the underlying reasoning patterns play a more crucial role in such tasks. In this paper, we propose Pattern-Aware CoT, a prompting method that considers the diversity of demonstration patterns. By incorporating patterns such as step length and reasoning process within intermediate steps, PA-CoT effectively mitigates the issue of bias induced by demonstrations and enables better generalization to diverse scenarios. We conduct experiments on nine reasoning benchmark tasks using two open-source LLMs. The results show that our method substantially enhances reasoning performance and exhibits robustness to errors. The code will be made publicly available.
Abstract:We study minimax optimization problems defined over infinite-dimensional function classes. In particular, we restrict the functions to the class of overparameterized two-layer neural networks and study (i) the convergence of the gradient descent-ascent algorithm and (ii) the representation learning of the neural network. As an initial step, we consider the minimax optimization problem stemming from estimating a functional equation defined by conditional expectations via adversarial estimation, where the objective function is quadratic in the functional space. For this problem, we establish convergence under the mean-field regime by considering the continuous-time and infinite-width limit of the optimization dynamics. Under this regime, gradient descent-ascent corresponds to a Wasserstein gradient flow over the space of probability measures defined over the space of neural network parameters. We prove that the Wasserstein gradient flow converges globally to a stationary point of the minimax objective at a $\mathcal{O}(T^{-1} + \alpha^{-1} ) $ sublinear rate, and additionally finds the solution to the functional equation when the regularizer of the minimax objective is strongly convex. Here $T$ denotes the time and $\alpha$ is a scaling parameter of the neural network. In terms of representation learning, our results show that the feature representation induced by the neural networks is allowed to deviate from the initial one by the magnitude of $\mathcal{O}(\alpha^{-1})$, measured in terms of the Wasserstein distance. Finally, we apply our general results to concrete examples including policy evaluation, nonparametric instrumental variable regression, and asset pricing.
Abstract:Volumetric biomedical microscopy has the potential to increase the diagnostic information extracted from clinical tissue specimens and improve the diagnostic accuracy of both human pathologists and computational pathology models. Unfortunately, barriers to integrating 3-dimensional (3D) volumetric microscopy into clinical medicine include long imaging times, poor depth / z-axis resolution, and an insufficient amount of high-quality volumetric data. Leveraging the abundance of high-resolution 2D microscopy data, we introduce masked slice diffusion for super-resolution (MSDSR), which exploits the inherent equivalence in the data-generating distribution across all spatial dimensions of biological specimens. This intrinsic characteristic allows for super-resolution models trained on high-resolution images from one plane (e.g., XY) to effectively generalize to others (XZ, YZ), overcoming the traditional dependency on orientation. We focus on the application of MSDSR to stimulated Raman histology (SRH), an optical imaging modality for biological specimen analysis and intraoperative diagnosis, characterized by its rapid acquisition of high-resolution 2D images but slow and costly optical z-sectioning. To evaluate MSDSR's efficacy, we introduce a new performance metric, SliceFID, and demonstrate MSDSR's superior performance over baseline models through extensive evaluations. Our findings reveal that MSDSR not only significantly enhances the quality and resolution of 3D volumetric data, but also addresses major obstacles hindering the broader application of 3D volumetric microscopy in clinical diagnostics and biomedical research.
Abstract:Recent advances in reinforcement learning (RL) algorithms aim to enhance the performance of language models at scale. Yet, there is a noticeable absence of a cost-effective and standardized testbed tailored to evaluating and comparing these algorithms. To bridge this gap, we present a generalized version of the 24-Puzzle: the $(N,K)$-Puzzle, which challenges language models to reach a target value $K$ with $N$ integers. We evaluate the effectiveness of established RL algorithms such as Proximal Policy Optimization (PPO), alongside novel approaches like Identity Policy Optimization (IPO) and Direct Policy Optimization (DPO).
Abstract:Large Language Models (LLMs) harness extensive data from the Internet, storing a broad spectrum of prior knowledge. While LLMs have proven beneficial as decision-making aids, their reliability is hampered by limitations in reasoning, hallucination phenomenon, and so on. On the other hand, Monte-Carlo Tree Search (MCTS) is a heuristic search algorithm that provides reliable decision-making solutions, achieved through recursive rollouts and self-play. However, the effectiveness of MCTS relies heavily on heuristic pruning and external value functions, particularly in complex decision scenarios. This work introduces an innovative approach that bolsters LLMs with MCTS self-play to efficiently resolve deterministic turn-based zero-sum games (DTZG), such as chess and go, without the need for additional training. Specifically, we utilize LLMs as both action pruners and proxies for value functions without the need for additional training. We theoretically prove that the suboptimality of the estimated value in our proposed method scales with $\tilde{\mathcal O}\Bigl(\frac{|\tilde {\mathcal A}|}{\sqrt{N}} + \epsilon_\mathrm{pruner} + \epsilon_\mathrm{critic}\Bigr)$, where \(N\) is the number of simulations, $|\tilde {\mathcal A}|$ is the cardinality of the pruned action space by LLM, and $\epsilon_\mathrm{pruner}$ and $\epsilon_\mathrm{critic}$ quantify the errors incurred by adopting LLMs as action space pruner and value function proxy, respectively. Our experiments in chess and go demonstrate the capability of our method to address challenges beyond the scope of MCTS and improve the performance of the directly application of LLMs.
Abstract:Graph Neural Networks (GNNs) have made significant advancements in node classification, but their success relies on sufficient labeled nodes per class in the training data. Real-world graph data often exhibits a long-tail distribution with sparse labels, emphasizing the importance of GNNs' ability in few-shot node classification, which entails categorizing nodes with limited data. Traditional episodic meta-learning approaches have shown promise in this domain, but they face an inherent limitation: it might lead the model to converge to suboptimal solutions because of random and uniform task assignment, ignoring task difficulty levels. This could lead the meta-learner to face complex tasks too soon, hindering proper learning. Ideally, the meta-learner should start with simple concepts and advance to more complex ones, like human learning. So, we introduce CPT, a novel two-stage curriculum learning method that aligns task difficulty with the meta-learner's progressive competence, enhancing overall performance. Specifically, in CPT's initial stage, the focus is on simpler tasks, fostering foundational skills for engaging with complex tasks later. Importantly, the second stage dynamically adjusts task difficulty based on the meta-learner's growing competence, aiming for optimal knowledge acquisition. Extensive experiments on popular node classification datasets demonstrate significant improvements of our strategy over existing methods.
Abstract:This paper proposes a new task in the field of Answering Subjective Induction Question on Products (SUBJPQA). The answer to this kind of question is non-unique, but can be interpreted from many perspectives. For example, the answer to 'whether the phone is heavy' has a variety of different viewpoints. A satisfied answer should be able to summarize these subjective opinions from multiple sources and provide objective knowledge, such as the weight of a phone. That is quite different from the traditional QA task, in which the answer to a factoid question is unique and can be found from a single data source. To address this new task, we propose a three-steps method. We first retrieve all answer-related clues from multiple knowledge sources on facts and opinions. The implicit commonsense facts are also collected to supplement the necessary but missing contexts. We then capture their relevance with the questions by interactive attention. Next, we design a reinforcement-based summarizer to aggregate all these knowledgeable clues. Based on a template-controlled decoder, we can output a comprehensive and multi-perspective answer. Due to the lack of a relevant evaluated benchmark set for the new task, we construct a large-scale dataset, named SupQA, consisting of 48,352 samples across 15 product domains. Evaluation results show the effectiveness of our approach.