Abstract:The Area Under the ROC Curve (AUC) is a well-known metric for evaluating instance-level long-tail learning problems. In the past two decades, many AUC optimization methods have been proposed to improve model performance under long-tail distributions. In this paper, we explore AUC optimization methods in the context of pixel-level long-tail semantic segmentation, a much more complicated scenario. This task introduces two major challenges for AUC optimization techniques. On one hand, AUC optimization in a pixel-level task involves complex coupling across loss terms, with structured inner-image and pairwise inter-image dependencies, complicating theoretical analysis. On the other hand, we find that mini-batch estimation of AUC loss in this case requires a larger batch size, resulting in an unaffordable space complexity. To address these issues, we develop a pixel-level AUC loss function and conduct a dependency-graph-based theoretical analysis of the algorithm's generalization ability. Additionally, we design a Tail-Classes Memory Bank (T-Memory Bank) to manage the significant memory demand. Finally, comprehensive experiments across various benchmarks confirm the effectiveness of our proposed AUCSeg method. The code is available at https://github.com/boyuh/AUCSeg.
Abstract:Transcriptome foundation models TFMs hold great promises of deciphering the transcriptomic language that dictate diverse cell functions by self-supervised learning on large-scale single-cell gene expression data, and ultimately unraveling the complex mechanisms of human diseases. However, current TFMs treat cells as independent samples and ignore the taxonomic relationships between cell types, which are available in cell ontology graphs. We argue that effectively leveraging this ontology information during the TFM pre-training can improve learning biologically meaningful gene co-expression patterns while preserving TFM as a general purpose foundation model for downstream zero-shot and fine-tuning tasks. To this end, we present \textbf{s}ingle \textbf{c}ell, \textbf{Cell}-\textbf{o}ntology guided TFM scCello. We introduce cell-type coherence loss and ontology alignment loss, which are minimized along with the masked gene expression prediction loss during the pre-training. The novel loss component guide scCello to learn the cell-type-specific representation and the structural relation between cell types from the cell ontology graph, respectively. We pre-trained scCello on 22 million cells from CellxGene database leveraging their cell-type labels mapped to the cell ontology graph from Open Biological and Biomedical Ontology Foundry. Our TFM demonstrates competitive generalization and transferability performance over the existing TFMs on biologically important tasks including identifying novel cell types of unseen cells, prediction of cell-type-specific marker genes, and cancer drug responses.
Abstract:This paper explores test-agnostic long-tail recognition, a challenging long-tail task where the test label distributions are unknown and arbitrarily imbalanced. We argue that the variation in these distributions can be broken down hierarchically into global and local levels. The global ones reflect a broad range of diversity, while the local ones typically arise from milder changes, often focused on a particular neighbor. Traditional methods predominantly use a Mixture-of-Expert (MoE) approach, targeting a few fixed test label distributions that exhibit substantial global variations. However, the local variations are left unconsidered. To address this issue, we propose a new MoE strategy, $\mathsf{DirMixE}$, which assigns experts to different Dirichlet meta-distributions of the label distribution, each targeting a specific aspect of local variations. Additionally, the diversity among these Dirichlet meta-distributions inherently captures global variations. This dual-level approach also leads to a more stable objective function, allowing us to sample different test distributions better to quantify the mean and variance of performance outcomes. Theoretically, we show that our proposed objective benefits from enhanced generalization by virtue of the variance-based regularization. Comprehensive experiments across multiple benchmarks confirm the effectiveness of $\mathsf{DirMixE}$. The code is available at \url{https://github.com/scongl/DirMixE}.
Abstract:In the rapidly growing field of electronic design automation (EDA), professional software such as KiCad, Cadence , and Altium Designer provide increasingly extensive design functionalities. However, the intricate command structure and high learning curve create a barrier, particularly for novice printed circuit board (PCB) designers. This results in difficulties in selecting appropriate functions or plugins for varying design purposes, compounded by the lack of intuitive learning methods beyond traditional documentation, videos, and online forums. To address this challenge, an artificial intelligence (AI) interaction assist plugin for EDA software named SmartonAl is developed here, also KiCad is taken as the first example. SmartonAI is inspired by the HuggingGPT framework and employs large language models, such as GPT and BERT, to facilitate task planning and execution. On receiving a designer request, SmartonAI conducts a task breakdown and efficiently executes relevant subtasks, such as analysis of help documentation paragraphs and execution of different plugins, along with leveraging the built-in schematic and PCB manipulation functions in both SmartonAl itself and software. Our preliminary results demonstrate that SmartonAI can significantly streamline the PCB design process by simplifying complex commands into intuitive language-based interactions. By harnessing the powerful language capabilities of ChatGPT and the rich design functions of KiCad, the plugin effectively bridges the gap between complex EDA software and user-friendly interaction. Meanwhile, the new paradigm behind SmartonAI can also extend to other complex software systems, illustrating the immense potential of AI-assisted user interfaces in advancing digital interactions across various domains.