Abstract:This paper explores a novel multi-modal alternating learning paradigm pursuing a reconciliation between the exploitation of uni-modal features and the exploration of cross-modal interactions. This is motivated by the fact that current paradigms of multi-modal learning tend to explore multi-modal features simultaneously. The resulting gradient prohibits further exploitation of the features in the weak modality, leading to modality competition, where the dominant modality overpowers the learning process. To address this issue, we study the modality-alternating learning paradigm to achieve reconcilement. Specifically, we propose a new method called ReconBoost to update a fixed modality each time. Herein, the learning objective is dynamically adjusted with a reconcilement regularization against competition with the historical models. By choosing a KL-based reconcilement, we show that the proposed method resembles Friedman's Gradient-Boosting (GB) algorithm, where the updated learner can correct errors made by others and help enhance the overall performance. The major difference with the classic GB is that we only preserve the newest model for each modality to avoid overfitting caused by ensembling strong learners. Furthermore, we propose a memory consolidation scheme and a global rectification scheme to make this strategy more effective. Experiments over six multi-modal benchmarks speak to the efficacy of the method. We release the code at https://github.com/huacong/ReconBoost.
Abstract:The key of Human-Object Interaction(HOI) recognition is to infer the relationship between human and objects. Recently, the image's Human-Object Interaction(HOI) detection has made significant progress. However, there is still room for improvement in video HOI detection performance. Existing one-stage methods use well-designed end-to-end networks to detect a video segment and directly predict an interaction. It makes the model learning and further optimization of the network more complex. This paper introduces the Spatial Parsing and Dynamic Temporal Pooling (SPDTP) network, which takes the entire video as a spatio-temporal graph with human and object nodes as input. Unlike existing methods, our proposed network predicts the difference between interactive and non-interactive pairs through explicit spatial parsing, and then performs interaction recognition. Moreover, we propose a learnable and differentiable Dynamic Temporal Module(DTM) to emphasize the keyframes of the video and suppress the redundant frame. Furthermore, the experimental results show that SPDTP can pay more attention to active human-object pairs and valid keyframes. Overall, we achieve state-of-the-art performance on CAD-120 dataset and Something-Else dataset.
Abstract:For a given video-based Human-Object Interaction scene, modeling the spatio-temporal relationship between humans and objects are the important cue to understand the contextual information presented in the video. With the effective spatio-temporal relationship modeling, it is possible not only to uncover contextual information in each frame but also to directly capture inter-time dependencies. It is more critical to capture the position changes of human and objects over the spatio-temporal dimension when their appearance features may not show up significant changes over time. The full use of appearance features, the spatial location and the semantic information are also the key to improve the video-based Human-Object Interaction recognition performance. In this paper, Spatio-Temporal Interaction Graph Parsing Networks (STIGPN) are constructed, which encode the videos with a graph composed of human and object nodes. These nodes are connected by two types of relations: (i) spatial relations modeling the interactions between human and the interacted objects within each frame. (ii) inter-time relations capturing the long range dependencies between human and the interacted objects across frame. With the graph, STIGPN learn spatio-temporal features directly from the whole video-based Human-Object Interaction scenes. Multi-modal features and a multi-stream fusion strategy are used to enhance the reasoning capability of STIGPN. Two Human-Object Interaction video datasets, including CAD-120 and Something-Else, are used to evaluate the proposed architectures, and the state-of-the-art performance demonstrates the superiority of STIGPN.
Abstract:The astounding success made by artificial intelligence (AI) in healthcare and other fields proves that AI can achieve human-like performance. However, success always comes with challenges. Deep learning algorithms are data-dependent and require large datasets for training. The lack of data in the medical imaging field creates a bottleneck for the application of deep learning to medical image analysis. Medical image acquisition, annotation, and analysis are costly, and their usage is constrained by ethical restrictions. They also require many resources, such as human expertise and funding. That makes it difficult for non-medical researchers to have access to useful and large medical data. Thus, as comprehensive as possible, this paper provides a collection of medical image datasets with their associated challenges for deep learning research. We have collected information of around three hundred datasets and challenges mainly reported between 2013 and 2020 and categorized them into four categories: head & neck, chest & abdomen, pathology & blood, and ``others''. Our paper has three purposes: 1) to provide a most up to date and complete list that can be used as a universal reference to easily find the datasets for clinical image analysis, 2) to guide researchers on the methodology to test and evaluate their methods' performance and robustness on relevant datasets, 3) to provide a ``route'' to relevant algorithms for the relevant medical topics, and challenge leaderboards.