Abstract:Neuromorphic sensors, specifically event cameras, revolutionize visual data acquisition by capturing pixel intensity changes with exceptional dynamic range, minimal latency, and energy efficiency, setting them apart from conventional frame-based cameras. The distinctive capabilities of event cameras have ignited significant interest in the domain of event-based action recognition, recognizing their vast potential for advancement. However, the development in this field is currently slowed by the lack of comprehensive, large-scale datasets, which are critical for developing robust recognition frameworks. To bridge this gap, we introduces DailyDVS-200, a meticulously curated benchmark dataset tailored for the event-based action recognition community. DailyDVS-200 is extensive, covering 200 action categories across real-world scenarios, recorded by 47 participants, and comprises more than 22,000 event sequences. This dataset is designed to reflect a broad spectrum of action types, scene complexities, and data acquisition diversity. Each sequence in the dataset is annotated with 14 attributes, ensuring a detailed characterization of the recorded actions. Moreover, DailyDVS-200 is structured to facilitate a wide range of research paths, offering a solid foundation for both validating existing approaches and inspiring novel methodologies. By setting a new benchmark in the field, we challenge the current limitations of neuromorphic data processing and invite a surge of new approaches in event-based action recognition techniques, which paves the way for future explorations in neuromorphic computing and beyond. The dataset and source code are available at https://github.com/QiWang233/DailyDVS-200.
Abstract:While neural networks have excelled in video action recognition tasks, their black-box nature often obscures the understanding of their decision-making processes. Recent approaches used inherently interpretable models to analyze video actions in a manner akin to human reasoning. These models, however, usually fall short in performance compared to their black-box counterparts. In this work, we present a new framework named Language-guided Interpretable Action Recognition framework (LaIAR). LaIAR leverages knowledge from language models to enhance both the recognition capabilities and the interpretability of video models. In essence, we redefine the problem of understanding video model decisions as a task of aligning video and language models. Using the logical reasoning captured by the language model, we steer the training of the video model. This integrated approach not only improves the video model's adaptability to different domains but also boosts its overall performance. Extensive experiments on two complex video action datasets, Charades & CAD-120, validates the improved performance and interpretability of our LaIAR framework. The code of LaIAR is available at https://github.com/NingWang2049/LaIAR.
Abstract:Despite neural networks (NN) have been widely applied in various fields and generally outperforms humans, they still lack interpretability to a certain extent, and humans are unable to intuitively understand the decision logic of NN. This also hinders the knowledge interaction between humans and NN, preventing humans from getting involved to give direct guidance when NN's decisions go wrong. While recent research in explainable AI has achieved interpretability of NN from various perspectives, it has not yet provided effective methods for knowledge exchange between humans and NN. To address this problem, we constructed a two-way interaction interface that uses structured representations of visual concepts and their relationships as the "language" for knowledge exchange between humans and NN. Specifically, NN provide intuitive reasoning explanations to humans based on the class-specific structural concepts graph (C-SCG). On the other hand, humans can modify the biases present in the C-SCG through their prior knowledge and reasoning ability, and thus provide direct knowledge guidance to NN through this interface. Through experimental validation, based on this interaction interface, NN can provide humans with easily understandable explanations of the reasoning process. Furthermore, human involvement and prior knowledge can directly and effectively contribute to enhancing the performance of NN.
Abstract:In recent years, the recognition of free-hand sketches has remained a popular task. However, in some special fields such as the military field, free-hand sketches are difficult to sample on a large scale. Common data augmentation and image generation techniques are difficult to produce images with various free-hand sketching styles. Therefore, the recognition and segmentation tasks in related fields are limited. In this paper, we propose a novel adversarial generative network that can accurately generate realistic free-hand sketches with various styles. We explore the performance of the model, including using styles randomly sampled from a prior normal distribution to generate images with various free-hand sketching styles, disentangling the painters' styles from known free-hand sketches to generate images with specific styles, and generating images of unknown classes that are not in the training set. We further demonstrate with qualitative and quantitative evaluations our advantages in visual quality, content accuracy, and style imitation on SketchIME.
Abstract:Gesture recognition is an indispensable component of natural and efficient human-computer interaction technology, particularly in desktop-level applications, where it can significantly enhance people's productivity. However, the current gesture recognition community lacks a suitable desktop-level (top-view perspective) dataset for lightweight gesture capture devices. In this study, we have established a dataset named GR4DHCI. What distinguishes this dataset is its inherent naturalness, intuitive characteristics, and diversity. Its primary purpose is to serve as a valuable resource for the development of desktop-level portable applications. GR4DHCI comprises over 7,000 gesture samples and a total of 382,447 frames for both Stereo IR and skeletal modalities. We also address the variances in hand positioning during desktop interactions by incorporating 27 different hand positions into the dataset. Building upon the GR4DHCI dataset, we conducted a series of experimental studies, the results of which demonstrate that the fine-grained classification blocks proposed in this paper can enhance the model's recognition accuracy. Our dataset and experimental findings presented in this paper are anticipated to propel advancements in desktop-level gesture recognition research.
Abstract:Flowcharts and mind maps, collectively known as flowmind, are vital in daily activities, with hand-drawn versions facilitating real-time collaboration. However, there's a growing need to digitize them for efficient processing. Automated conversion methods are essential to overcome manual conversion challenges. Existing sketch recognition methods face limitations in practical situations, being field-specific and lacking digital conversion steps. Our paper introduces the Flowmind2digital method and hdFlowmind dataset to address these challenges. Flowmind2digital, utilizing neural networks and keypoint detection, achieves a record 87.3% accuracy on our dataset, surpassing previous methods by 11.9%. The hdFlowmind dataset, comprising 1,776 annotated flowminds across 22 scenarios, outperforms existing datasets. Additionally, our experiments emphasize the importance of simple graphics, enhancing accuracy by 9.3%.
Abstract:Free-hand sketches are appealing for humans as a universal tool to depict the visual world. Humans can recognize varied sketches of a category easily by identifying the concurrence and layout of the intrinsic semantic components of the category, since humans draw free-hand sketches based a common consensus that which types of semantic components constitute each sketch category. For example, an airplane should at least have a fuselage and wings. Based on this analysis, a semantic component-level memory module is constructed and embedded in the proposed structured sketch recognition network in this paper. The memory keys representing semantic components of each sketch category can be self-learned and enhance the recognition network's explainability. Our proposed networks can deal with different situations of sketch recognition, i.e., with or without semantic components labels of strokes. Experiments on the SPG and SketchIME datasets demonstrate the memory module's flexibility and the recognition network's explainability. The code and data are available at https://github.com/GuangmingZhu/SketchESC.
Abstract:With the recent surge in the use of touchscreen devices, free-hand sketching has emerged as a promising modality for human-computer interaction. While previous research has focused on tasks such as recognition, retrieval, and generation of familiar everyday objects, this study aims to create a Sketch Input Method Editor (SketchIME) specifically designed for a professional C4I system. Within this system, sketches are utilized as low-fidelity prototypes for recommending standardized symbols in the creation of comprehensive situation maps. This paper also presents a systematic dataset comprising 374 specialized sketch types, and proposes a simultaneous recognition and segmentation architecture with multilevel supervision between recognition and segmentation to improve performance and enhance interpretability. By incorporating few-shot domain adaptation and class-incremental learning, the network's ability to adapt to new users and extend to new task-specific classes is significantly enhanced. Results from experiments conducted on both the proposed dataset and the SPG dataset illustrate the superior performance of the proposed architecture. Our dataset and code are publicly available at https://github.com/Anony517/SketchIME.
Abstract:Neural Radiance Fields (NeRF) is a novel implicit 3D reconstruction method that shows immense potential and has been gaining increasing attention. It enables the reconstruction of 3D scenes solely from a set of photographs. However, its real-time rendering capability, especially for interactive real-time rendering of large-scale scenes, still has significant limitations. To address these challenges, in this paper, we propose a novel neural rendering system called UE4-NeRF, specifically designed for real-time rendering of large-scale scenes. We partitioned each large scene into different sub-NeRFs. In order to represent the partitioned independent scene, we initialize polygonal meshes by constructing multiple regular octahedra within the scene and the vertices of the polygonal faces are continuously optimized during the training process. Drawing inspiration from Level of Detail (LOD) techniques, we trained meshes of varying levels of detail for different observation levels. Our approach combines with the rasterization pipeline in Unreal Engine 4 (UE4), achieving real-time rendering of large-scale scenes at 4K resolution with a frame rate of up to 43 FPS. Rendering within UE4 also facilitates scene editing in subsequent stages. Furthermore, through experiments, we have demonstrated that our method achieves rendering quality comparable to state-of-the-art approaches. Project page: https://jamchaos.github.io/UE4-NeRF/.
Abstract:The key of Human-Object Interaction(HOI) recognition is to infer the relationship between human and objects. Recently, the image's Human-Object Interaction(HOI) detection has made significant progress. However, there is still room for improvement in video HOI detection performance. Existing one-stage methods use well-designed end-to-end networks to detect a video segment and directly predict an interaction. It makes the model learning and further optimization of the network more complex. This paper introduces the Spatial Parsing and Dynamic Temporal Pooling (SPDTP) network, which takes the entire video as a spatio-temporal graph with human and object nodes as input. Unlike existing methods, our proposed network predicts the difference between interactive and non-interactive pairs through explicit spatial parsing, and then performs interaction recognition. Moreover, we propose a learnable and differentiable Dynamic Temporal Module(DTM) to emphasize the keyframes of the video and suppress the redundant frame. Furthermore, the experimental results show that SPDTP can pay more attention to active human-object pairs and valid keyframes. Overall, we achieve state-of-the-art performance on CAD-120 dataset and Something-Else dataset.