Abstract:Free-hand sketches are appealing for humans as a universal tool to depict the visual world. Humans can recognize varied sketches of a category easily by identifying the concurrence and layout of the intrinsic semantic components of the category, since humans draw free-hand sketches based a common consensus that which types of semantic components constitute each sketch category. For example, an airplane should at least have a fuselage and wings. Based on this analysis, a semantic component-level memory module is constructed and embedded in the proposed structured sketch recognition network in this paper. The memory keys representing semantic components of each sketch category can be self-learned and enhance the recognition network's explainability. Our proposed networks can deal with different situations of sketch recognition, i.e., with or without semantic components labels of strokes. Experiments on the SPG and SketchIME datasets demonstrate the memory module's flexibility and the recognition network's explainability. The code and data are available at https://github.com/GuangmingZhu/SketchESC.
Abstract:Multi-channel speech enhancement seeks to utilize spatial information to distinguish target speech from interfering signals. While deep learning approaches like the dual-path convolutional recurrent network (DPCRN) have made strides, challenges persist in effectively modeling inter-channel correlations and amalgamating multi-level information. In response, we introduce the Parallel Dual-Path Convolutional Recurrent Network (PDPCRN). This acoustic modeling architecture has two key innovations. First, a parallel design with separate branches extracts complementary features. Second, bi-directional modules enable cross-branch communication. Together, these facilitate diverse representation fusion and enhanced modeling. Experimental validation on TIMIT datasets underscores the prowess of PDPCRN. Notably, against baseline models like the standard DPCRN, PDPCRN not only outperforms in PESQ and STOI metrics but also boasts a leaner computational footprint with reduced parameters.