Abstract:Since the secrecy rate (SR) performance improvement obtained by secure directional modulation (DM) network is limited, an active intelligent reflective surface (IRS)-assisted DM network is considered to attain a high SR. To address the SR maximization problem, a novel method based on Lagrangian dual transform and closed-form fractional programming algorithm (LDT-CFFP) is proposed, where the solutions to base station (BS) beamforming vectors and IRS reflection coefficient matrix are achieved. However, the computational complexity of LDT-CFFP method is high . To reduce its complexity, a blocked IRS-assisted DM network is designed. To meet the requirements of the network performance, a power allocation (PA) strategy is proposed and adopted in the system. Specifically, the system power between BS and IRS, as well as the transmission power for confidential messages (CM) and artificial noise (AN) from the BS, are allocated separately. Then we put forward null-space projection (NSP) method, maximum-ratio-reflecting (MRR) algorithm and PA strategy (NSP-MRR-PA) to solve the SR maximization problem. The CF solutions to BS beamforming vectors and IRS reflection coefficient matrix are respectively attained via NSP and MRR algorithms. For the PA factors, we take advantage of exhaustive search (ES) algorithm, particle swarm optimization (PSO) and simulated annealing (SA) algorithm to search for the solutions. From simulation results, it is verified that the LDT-CFFP method derives a higher SR gain over NSP-MRR-PA method. For NSP-MRR-PA method, the number of IRS units in each block possesses a significant SR performance. In addition, the application PA strategies, namely ES, PSO, SA methods outperforms the other PA strategies with fixed PA factors.
Abstract:General detectors follow the pipeline that feature maps extracted from ConvNets are shared between classification and regression tasks. However, there exists obvious conflicting requirements in multi-orientation object detection that classification is insensitive to orientations, while regression is quite sensitive. To address this issue, we provide an Encoder-Decoder architecture, called Rotated Feature Network (RFN), which produces rotation-sensitive feature maps (RS) for regression and rotation-invariant feature maps (RI) for classification. Specifically, the Encoder unit assigns weights for rotated feature maps. The Decoder unit extracts RS and RI by performing resuming operator on rotated and reweighed feature maps, respectively. To make the rotation-invariant characteristics more reliable, we adopt a metric to quantitatively evaluate the rotation-invariance by adding a constrain item in the loss, yielding a promising detection performance. Compared with the state-of-the-art methods, our method can achieve significant improvement on NWPU VHR-10 and RSOD datasets. We further evaluate the RFN on the scene classification in remote sensing images and object detection in natural images, demonstrating its good generalization ability. The proposed RFN can be integrated into an existing framework, leading to great performance with only a slight increase in model complexity.