Abstract:Cell-free massive multiple-input-multiple-output (CF-mMIMO) is regarded as one of the promising technologies for next-generation wireless networks. However, due to its distributed architecture, geographically separated access points (APs) jointly serve a large number of user-equipments (UEs), there will inevitably be a discrepancies in the arrival time of transmitted signals. In this paper, we investigate millimeter-wave (mmWave) CF-mMIMO orthogonal frequency division multiplexing (OFDM) systems with asynchronous reception in a wide area coverage scenario, where asynchronous timing offsets may extend far beyond the cyclic prefix (CP) range. A comprehensive asynchronous beam-domain signal transmission model is presented for mmWave CF-mMIMO-OFDM systems in both downlink and uplink, incorporating phase offset, inter-carrier interference (ICI) and inter-symbol interference (ISI). To address the issue of asynchronous reception, we propose a novel per-beam timing advance (PBTA) hybrid precoding architecture and analyze the spectral efficiency (SE) in the beam domain for downlink and uplink asynchronous receptions. Both scalable centralized and distributed implementations are taken into account, and the asynchronous delay phase is utilized to design precoding/combining vectors. Furthermore, we formulate the sum rate maximization problem and develop two low-complexity joint beam selection and UE association algorithms considering the impact of asynchronous timing offset exceeding the CP range. Simulation results demonstrate that the performance will be severely limited by ICI and ISI, and our proposed PBTA hybrid precoding architecture effectively mitigates asynchronous interference compared to the nearest AAU/UE-based timing-advance scheme. Additionally, numerical results show that our proposed low-complexity joint beam selection and UE association algorithms achieve superior SE performance.
Abstract:In the research of next-generation wireless communication technologies, orthogonal time frequency space (OTFS) modulation is emerging as a promising technique for high-speed mobile environments due to its superior efficiency and robustness in doubly selective channels. Additionally, the cell-free architecture, which eliminates the issues associated with cell boundaries, offers broader coverage for radio access networks. By combining cell-free network architecture with OTFS modulation, the system may meet the demands of massive random access required by machine-type communication devices in high-speed scenarios. This paper explores a massive random access scheme based on OTFS modulation within a cell-free architecture. A transceiver model for uplink OTFS signals involving multiple access points (APs) is developed, where channel estimation with fractional channel parameters is approximated as a block sparse matrix recovery problem. Building on existing superimposed and embedded preamble schemes, a hybrid preamble scheme is proposed. This scheme leverages superimposed and embedded preambles to respectively achieve rough and accurate active user equipment (UEs) detection (AUD), as well as precise channel estimation, under the condition of supporting a large number of access UEs. Moreover, this study introduces a generalized approximate message passing and pattern coupling sparse Bayesian learning with Laplacian prior (GAMP-PCSBL-La) algorithm, which effectively captures block sparse features after discrete cosine transform (DCT), delivering precise estimation results with reduced computational complexity. Simulation results demonstrate that the proposed scheme is effective and provides superior performance compared to other existing schemes.
Abstract:This paper studies the large-scale cell-free networks where dense distributed access points (APs) serve many users. As a promising next-generation network architecture, cell-free networks enable ultra-reliable connections and minimal fading/blockage, which are much favorable to the millimeter wave and Terahertz transmissions. However, conventional beam management with large phased arrays in a cell is very time-consuming in the higher-frequencies, and could be worsened when deploying a large number of coordinated APs in the cell-free systems. To tackle this challenge, the spatial-spectral cell-free networks with the leaky-wave antennas are established by coupling the propagation angles with frequencies. The beam training overhead in this direction can be significantly reduced through exploiting such spatial-spectral coupling effects. In the considered large-scale spatial-spectral cell-free networks, a novel subchannel allocation solution at sub-terahertz bands is proposed by leveraging the relationship between cross-entropy method and mixture model. Since initial access and AP clustering play a key role in achieving scalable large-scale cell-free networks, a hierarchical AP clustering solution is proposed to make the joint initial access and cluster formation, which is adaptive and has no need to initialize the number of AP clusters. After AP clustering, a subchannel allocation solution is devised to manage the interference between AP clusters. Numerical results are presented to confirm the efficiency of the proposed solutions and indicate that besides subchannel allocation, AP clustering can also have a big impact on the large-scale cell-free network performance at sub-terahertz bands.
Abstract:This paper analyzes the impact of pilot-sharing scheme on synchronization performance in a scenario where several slave access points (APs) with uncertain carrier frequency offsets (CFOs) and timing offsets (TOs) share a common pilot sequence. First, the Cramer-Rao bound (CRB) with pilot contamination is derived for pilot-pairing estimation. Furthermore, a maximum likelihood algorithm is presented to estimate the CFO and TO among the pairing APs. Then, to minimize the sum of CRBs, we devise a synchronization strategy based on a pilot-sharing scheme by jointly optimizing the cluster classification, synchronization overhead, and pilot-sharing scheme, while simultaneously considering the overhead and each AP's synchronization requirements. To solve this NP-hard problem, we simplify it into two sub-problems, namely cluster classification problem and the pilot sharing problem. To strike a balance between synchronization performance and overhead, we first classify the clusters by using the K-means algorithm, and propose a criteria to find a good set of master APs. Then, the pilot-sharing scheme is obtained by using the swap-matching operations. Simulation results validate the accuracy of our derivations and demonstrate the effectiveness of the proposed scheme over the benchmark schemes.
Abstract:This paper investigates the network-assisted full-duplex (NAFD) cell-free millimeter-wave (mmWave) networks, where the distribution of the transmitting access points (T-APs) and receiving access points (R-APs) across distinct geographical locations mitigates cross-link interference, facilitating the attainment of a truly flexible duplex mode. To curtail deployment expenses and power consumption for mmWave band operations, each AP incorporates a hybrid digital-analog structure encompassing precoder/combiner functions. However, this incorporation introduces processing intricacies within channel estimation and precoding/combining design. In this paper, we first present a hybrid multiple-input multiple-output (MIMO) processing framework and derive explicit expressions for both uplink and downlink achievable rates. Then we formulate a power allocation problem to maximize the weighted bidirectional sum rates. To tackle this non-convex problem, we develop a collaborative multi-agent deep reinforcement learning (MADRL) algorithm called multi-agent twin delayed deep deterministic policy gradient (MATD3) for NAFD cell-free mmWave networks. Specifically, given the tightly coupled nature of both uplink and downlink power coefficients in NAFD cell-free mmWave networks, the MATD3 algorithm resolves such coupled conflicts through an interactive learning process between agents and the environment. Finally, the simulation results validate the effectiveness of the proposed channel estimation methods within our hybrid MIMO processing paradigm, and demonstrate that our MATD3 algorithm outperforms both multi-agent deep deterministic policy gradient (MADDPG) and conventional power allocation strategies.
Abstract:The integration of sensing capabilities into communication systems, by sharing physical resources, has a significant potential for reducing spectrum, hardware, and energy costs while inspiring innovative applications. Cooperative networks, in particular, are expected to enhance sensing services by enlarging the coverage area and enriching sensing measurements, thus improving the service availability and accuracy. This paper proposes a cooperative integrated sensing and communication (ISAC) framework by leveraging information-carrying orthogonal frequency division multiplexing (OFDM) signals transmitted by access points (APs). Specifically, we propose a two-stage scheme for target localization, where communication signals are reused as sensing reference signals based on the system information shared at the central processing unit (CPU). In Stage I, we measure the ranges of scattered paths induced by targets, through the extraction of time-delay information from the received signals at APs. Then, the target locations are estimated in Stage II based on these range measurements. Considering that the scattered paths corresponding to some targets may not be detectable by all APs, we propose an effective algorithm to match the range measurements with the targets and achieve the target location estimation. Notably, by analyzing the OFDM numerologies defined in fifth generation (5G) standards, we elucidate the flexibility and consistency of performance trade-offs in both communication and sensing aspects. Finally, numerical results confirm the effectiveness of our sensing scheme and the cooperative gain of the ISAC framework.
Abstract:In this paper, we combine the network-assisted full-duplex (NAFD) technology and distributed radar sensing to implement integrated sensing and communication (ISAC). The ISAC system features both uplink and downlink remote radio units (RRUs) equipped with communication and sensing capabilities. We evaluate the communication and sensing performance of the system using the sum communication rates and the Cramer-Rao lower bound (CRLB), respectively. We compare the performance of the proposed scheme with other ISAC schemes, the result shows that the proposed scheme can provide more stable sensing and better communication performance. Furthermore, we propose two power allocation algorithms to optimize the communication and sensing performance jointly. One algorithm is based on the deep Q-network (DQN) and the other one is based on the non-dominated sorting genetic algorithm II (NSGA-II). The proposed algorithms provide more feasible solutions and achieve better system performance than the equal power allocation algorithm.
Abstract:This paper investigates how to achieve integrated sensing and communication (ISAC) based on a cell-free radio access network (CF-RAN) architecture with a minimum footprint of communication resources. We propose a new passive sensing scheme. The scheme is based on the radio frequency (RF) fingerprint learning of the RF radio unit (RRU) to build an RF fingerprint library of RRUs. The source RRU is identified by comparing the RF fingerprints carried by the signal at the receiver side. The receiver extracts the channel parameters from the signal and estimates the channel environment, thus locating the reflectors in the environment. The proposed scheme can effectively solve the problem of interference between signals in the same time-frequency domain but in different spatial domains when multiple RRUs jointly serve users in CF-RAN architecture. Simulation results show that the proposed passive ISAC scheme can effectively detect reflector location information in the environment without degrading the communication performance.
Abstract:A future millimeter-wave (mmWave) massive multiple-input and multiple-output (MIMO) system may serve hundreds or thousands of users at the same time; thus, research on multiple access technology is particularly important.Moreover, due to the short-wavelength nature of a mmWave, large-scale arrays are easier to implement than microwaves, while their directivity and sparseness make the physical beamforming effect of precoding more prominent.In consideration of the mmWave angle division multiple access (ADMA) system based on precoding, this paper investigates the influence of the angle distribution on system performance, which is denoted as the angular multiplexing gain.Furthermore, inspired by the above research, we transform the ADMA user grouping problem to maximize the system sum-rate into the inter-user angular spacing equalization problem.Then, the form of the optimal solution for the approximate problem is derived, and the corresponding grouping algorithm is proposed.The simulation results demonstrate that the proposed algorithm performs better than the comparison methods.Finally, a complexity analysis also shows that the proposed algorithm has extremely low complexity.
Abstract:In this paper, we investigate network-assisted full-duplex (NAFD) cell-free millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems with digital-to-analog converter (DAC) quantization and fronthaul compression. We propose to maximize the weighted uplink and downlink sum rate by jointly optimizing the power allocation of both the transmitting remote antenna units (T-RAUs) and uplink users and the variances of the downlink and uplink fronthaul compression noises. To deal with this challenging problem, we further apply a successive convex approximation (SCA) method to handle the non-convex bidirectional limited-capacity fronthaul constraints. The simulation results verify the convergence of the proposed SCA-based algorithm and analyze the impact of fronthaul capacity and DAC quantization on the spectral efficiency of the NAFD cell-free mmWave massive MIMO systems. Moreover, some insightful conclusions are obtained through the comparisons of spectral efficiency, which shows that NAFD achieves better performance gains than co-time co-frequency full-duplex cloud radio access network (CCFD C-RAN) in the cases of practical limited-resolution DACs. Specifically, their performance gaps with 8-bit DAC quantization are larger than that with 1-bit DAC quantization, which attains a 5.5-fold improvement.