Abstract:As an emerging technology, cooperative bi-static integrated sensing and communication (ISAC) is promising to achieve high-precision sensing, high-rate communication as well as self-interference (SI) avoidance. This paper investigates the two-timescale design for access point (AP) mode selection to realize the full potential of the cooperative bi-static ISAC network with low system overhead, where the beamforming at the APs is adapted to the rapidly-changing instantaneous channel state information (CSI), while the AP mode is adapted to the slowly-changing statistical CSI. We first apply the minimum mean square error (MMSE) estimator to estimate the channel between the APs and the channels from the APs to the user equipments (UEs). Then we adopt the low-complexity maximum ratio transmission (MRT) beamforming and the maximum ratio combining (MRC) detector, and derive the closed-form expressions of the communication rate and the sensing signal-to-interference-plus-noise-ratio (SINR). We formulate a non-convex integer optimization problem to maximize the minimum sensing SINR under the communication quality of service (QoS) constraints. McCormick envelope relaxation and successive convex approximation (SCA) techniques are applied to solve the challenging non-convex integer optimization problem. Simulation results validate the closed-form expressions and prove the convergence and effectiveness of the proposed AP mode selection scheme.
Abstract:The advent of artificial intelligence (AI) has enabled a comprehensive exploration of materials for various applications. However, AI models often prioritize frequently encountered materials in the scientific literature, limiting the selection of suitable candidates based on inherent physical and chemical properties. To address this imbalance, we have generated a dataset of 1,494,017 natural language-material paragraphs based on combined OQMD, Materials Project, JARVIS, COD and AFLOW2 databases, which are dominated by ab initio calculations and tend to be much more evenly distributed on the periodic table. The generated text narratives were then polled and scored by both human experts and ChatGPT-4, based on three rubrics: technical accuracy, language and structure, and relevance and depth of content, showing similar scores but with human-scored depth of content being the most lagging. The merger of multi-modality data sources and large language model (LLM) holds immense potential for AI frameworks to help the exploration and discovery of solid-state materials for specific applications.
Abstract:We investigate whether large language models can perform the creative hypothesis generation that human researchers regularly do. While the error rate is high, generative AI seems to be able to effectively structure vast amounts of scientific knowledge and provide interesting and testable hypotheses. The future scientific enterprise may include synergistic efforts with a swarm of "hypothesis machines", challenged by automated experimentation and adversarial peer reviews.