Abstract:We propose EdiText, a controllable text editing method that modify the reference text to desired attributes at various scales. We integrate an SDEdit-based editing technique that allows for broad adjustments in the degree of text editing. Additionally, we introduce a novel fine-level editing method based on self-conditioning, which allows subtle control of reference text. While being capable of editing on its own, this fine-grained method, integrated with the SDEdit approach, enables EdiText to make precise adjustments within the desired range. EdiText demonstrates its controllability to robustly adjust reference text at broad range of levels across various tasks, including toxicity control and sentiment control.
Abstract:Recent advancements in multi-turn voice interaction models have improved user-model communication. However, while closed-source models effectively retain and recall past utterances, whether open-source models share this ability remains unexplored. To fill this gap, we systematically evaluate how well open-source interaction models utilize past utterances using ContextDialog, a benchmark we proposed for this purpose. Our findings show that speech-based models have more difficulty than text-based ones, especially when recalling information conveyed in speech, and even with retrieval-augmented generation, models still struggle with questions about past utterances. These insights highlight key limitations in open-source models and suggest ways to improve memory retention and retrieval robustness.
Abstract:Detailed image captioning is essential for tasks like data generation and aiding visually impaired individuals. High-quality captions require a balance between precision and recall, which remains challenging for current multimodal large language models (MLLMs). In this work, we hypothesize that this limitation stems from weakening and increasingly noisy visual attention as responses lengthen. To address this issue, we propose SPARC (Selective Progressive Attention ReCalibration), a training-free method that enhances the contribution of visual tokens during decoding. SPARC is founded on three key observations: (1) increasing the influence of all visual tokens reduces recall; thus, SPARC selectively amplifies visual tokens; (2) as captions lengthen, visual attention becomes noisier, so SPARC identifies critical visual tokens by leveraging attention differences across time steps; (3) as visual attention gradually weakens, SPARC reinforces it to preserve its influence. Our experiments, incorporating both automated and human evaluations, demonstrate that existing methods improve the precision of MLLMs at the cost of recall. In contrast, our proposed method enhances both precision and recall with minimal computational overhead.
Abstract:Transmission electron microscope (TEM) images are often corrupted by noise, hindering their interpretation. To address this issue, we propose a deep learning-based approach using simulated images. Using density functional theory calculations with a set of pseudo-atomic orbital basis sets, we generate highly accurate ground truth images. We introduce four types of noise into these simulations to create realistic training datasets. Each type of noise is then used to train a separate convolutional neural network (CNN) model. Our results show that these CNNs are effective in reducing noise, even when applied to images with different noise levels than those used during training. However, we observe limitations in some cases, particularly in preserving the integrity of circular shapes and avoiding visible artifacts between image patches. To overcome these challenges, we propose alternative training strategies and future research directions. This study provides a valuable framework for training deep learning models for TEM image denoising.
Abstract:While CLIP has significantly advanced multimodal understanding by bridging vision and language, the inability to grasp negation - such as failing to differentiate concepts like "parking" from "no parking" - poses substantial challenges. By analyzing the data used in the public CLIP model's pre-training, we posit this limitation stems from a lack of negation-inclusive data. To address this, we introduce data generation pipelines that employ a large language model (LLM) and a multimodal LLM to produce negation-inclusive captions. Fine-tuning CLIP with data generated from our pipelines, we develop NegationCLIP, which enhances negation awareness while preserving the generality. Moreover, to enable a comprehensive evaluation of negation understanding, we propose NegRefCOCOg-a benchmark tailored to test VLMs' ability to interpret negation across diverse expressions and positions within a sentence. Experiments on various CLIP architectures validate the effectiveness of our data generation pipelines in enhancing CLIP's ability to perceive negation accurately. Additionally, NegationCLIP's enhanced negation awareness has practical applications across various multimodal tasks, demonstrated by performance gains in text-to-image generation and referring image segmentation.
Abstract:Deep Neural Networks have spearheaded remarkable advancements in time series forecasting (TSF), one of the major tasks in time series modeling. Nonetheless, the non-stationarity of time series undermines the reliability of pre-trained source time series forecasters in mission-critical deployment settings. In this study, we introduce a pioneering test-time adaptation framework tailored for TSF (TSF-TTA). TAFAS, the proposed approach to TSF-TTA, flexibly adapts source forecasters to continuously shifting test distributions while preserving the core semantic information learned during pre-training. The novel utilization of partially-observed ground truth and gated calibration module enables proactive, robust, and model-agnostic adaptation of source forecasters. Experiments on diverse benchmark datasets and cutting-edge architectures demonstrate the efficacy and generality of TAFAS, especially in long-term forecasting scenarios that suffer from significant distribution shifts. The code is available at https://github.com/kimanki/TAFAS.
Abstract:Multimodal large language models (MLLMs) excel at generating highly detailed captions but often produce hallucinations. Our analysis reveals that existing hallucination detection methods struggle with detailed captions. We attribute this to the increasing reliance of MLLMs on their generated text, rather than the input image, as the sequence length grows. To address this issue, we propose a multiagent approach that leverages LLM-MLLM collaboration to correct given captions. Additionally, we introduce an evaluation framework and a benchmark dataset to facilitate the systematic analysis of detailed captions. Our experiments demonstrate that our proposed evaluation method better aligns with human judgments of factuality than existing metrics and that existing approaches to improve the MLLM factuality may fall short in hyper-detailed image captioning tasks. In contrast, our proposed method significantly enhances the factual accuracy of captions, even improving those generated by GPT-4V. Finally, we highlight a limitation of VQA-centric benchmarking by demonstrating that an MLLM's performance on VQA benchmarks may not correlate with its ability to generate detailed image captions.
Abstract:Recent learning-based Multi-View Stereo models have demonstrated state-of-the-art performance in sparse-view 3D reconstruction. However, directly applying 3D Gaussian Splatting (3DGS) as a refinement step following these models presents challenges. We hypothesize that the excessive positional degrees of freedom (DoFs) in Gaussians induce geometry distortion, fitting color patterns at the cost of structural fidelity. To address this, we propose reprojection-based DoF separation, a method distinguishing positional DoFs in terms of uncertainty: image-plane-parallel DoFs and ray-aligned DoF. To independently manage each DoF, we introduce a reprojection process along with tailored constraints for each DoF. Through experiments across various datasets, we confirm that separating the positional DoFs of Gaussians and applying targeted constraints effectively suppresses geometric artifacts, producing reconstruction results that are both visually and geometrically plausible.
Abstract:Transformers, a groundbreaking architecture proposed for Natural Language Processing (NLP), have also achieved remarkable success in Computer Vision. A cornerstone of their success lies in the attention mechanism, which models relationships among tokens. While the tokenization process in NLP inherently ensures that a single token does not contain multiple semantics, the tokenization of Vision Transformer (ViT) utilizes tokens from uniformly partitioned square image patches, which may result in an arbitrary mixing of visual concepts in a token. In this work, we propose to substitute the grid-based tokenization in ViT with superpixel tokenization, which employs superpixels to generate a token that encapsulates a sole visual concept. Unfortunately, the diverse shapes, sizes, and locations of superpixels make integrating superpixels into ViT tokenization rather challenging. Our tokenization pipeline, comprised of pre-aggregate extraction and superpixel-aware aggregation, overcomes the challenges that arise in superpixel tokenization. Extensive experiments demonstrate that our approach, which exhibits strong compatibility with existing frameworks, enhances the accuracy and robustness of ViT on various downstream tasks.
Abstract:Subject-driven text-to-image generation aims to produce images of a new subject within a desired context by accurately capturing both the visual characteristics of the subject and the semantic content of a text prompt. Traditional methods rely on time- and resource-intensive fine-tuning for subject alignment, while recent zero-shot approaches leverage on-the-fly image prompting, often sacrificing subject alignment. In this paper, we introduce Diptych Prompting, a novel zero-shot approach that reinterprets as an inpainting task with precise subject alignment by leveraging the emergent property of diptych generation in large-scale text-to-image models. Diptych Prompting arranges an incomplete diptych with the reference image in the left panel, and performs text-conditioned inpainting on the right panel. We further prevent unwanted content leakage by removing the background in the reference image and improve fine-grained details in the generated subject by enhancing attention weights between the panels during inpainting. Experimental results confirm that our approach significantly outperforms zero-shot image prompting methods, resulting in images that are visually preferred by users. Additionally, our method supports not only subject-driven generation but also stylized image generation and subject-driven image editing, demonstrating versatility across diverse image generation applications. Project page: https://diptychprompting.github.io/