Abstract:Dual function radar and communication (DFRC) is a promising research direction within integrated sensing and communication (ISAC), improving hardware and spectrum efficiency by merging sensing and communication (S&C) functionalities into a shared platform. However, the DFRC receiver (DFRC-R) is tasked with both uplink communication signal detection and simultaneously target-related parameter estimation from the echoes, leading to issues with mutual interference. In this paper, a projection-based scheme is proposed to equivalently transform the joint signal detection and target estimation problem into a joint signal detection process across multiple snapshots. Compared with conventional successive interference cancellation (SIC) schemes, our proposed approach achieves a higher signal-to-noise ratio (SNR), and a higher ergodic rate when the radar signal is non-negligible. Nonetheless, it introduces an ill-conditioned signal detection problem, which is addressed using a non-linear detector. By jointly processing an increased number of snapshots, the proposed scheme can achieve high S&C performance simultaneously.
Abstract:In this paper, we investigate a movable antenna (MA)-aided integrated sensing and communication (ISAC) system, where a reconfigurable intelligent surface (RIS) is employed to enhance wireless communication and sensing performance in dead zones. Specifically, this paper aims to maximize the minimum beampattern gain at the RIS by jointly optimizing beamforming matrix at the base station (BS), the reflecting coefficients at the RIS and the positions of the MAs, subject to signal-to-interference-plus-noise ratio (SINR) constraint for the users and maximum transmit power at the BS. To tackle this non-convex optimization problem, we propose an alternating optimization (AO) algorithm and employ semidefinite relaxation (SDR), sequential rank-one constraint relaxation (SRCR) and successive convex approximation (SCA) techniques. Numerical results indicate that the MA and RIS-aided ISAC system outperforms conventional fixed position antenna (FPA) and RIS-aided systems. In addition, the application of MAs can reduce the similarity of user channels and enhance channel gain in the ISAC system.
Abstract:This paper analyzes the impact of pilot-sharing scheme on synchronization performance in a scenario where several slave access points (APs) with uncertain carrier frequency offsets (CFOs) and timing offsets (TOs) share a common pilot sequence. First, the Cramer-Rao bound (CRB) with pilot contamination is derived for pilot-pairing estimation. Furthermore, a maximum likelihood algorithm is presented to estimate the CFO and TO among the pairing APs. Then, to minimize the sum of CRBs, we devise a synchronization strategy based on a pilot-sharing scheme by jointly optimizing the cluster classification, synchronization overhead, and pilot-sharing scheme, while simultaneously considering the overhead and each AP's synchronization requirements. To solve this NP-hard problem, we simplify it into two sub-problems, namely cluster classification problem and the pilot sharing problem. To strike a balance between synchronization performance and overhead, we first classify the clusters by using the K-means algorithm, and propose a criteria to find a good set of master APs. Then, the pilot-sharing scheme is obtained by using the swap-matching operations. Simulation results validate the accuracy of our derivations and demonstrate the effectiveness of the proposed scheme over the benchmark schemes.
Abstract:Combining millimetre-wave (mmWave) communications with an extremely large-scale antenna array (ELAA) presents a promising avenue for meeting the spectral efficiency demands of the future sixth generation (6G) mobile communications. However, beam training for mmWave ELAA systems is challenged by excessive pilot overheads as well as insufficient accuracy, as the huge near-field codebook has to be accounted for. In this paper, inspired by the similarity between far-field sub-6 GHz channels and near-field mmWave channels, we propose to leverage sub-6 GHz uplink pilot signals to directly estimate the optimal near-field mmWave codeword, which aims to reduce pilot overhead and bypass the channel estimation. Moreover, we adopt deep learning to perform this dual mapping function, i.e., sub-6 GHz to mmWave, far-field to near-field, and a novel neural network structure called NMBEnet is designed to enhance the precision of beam training. Specifically, when considering the orthogonal frequency division multiplexing (OFDM) communication scenarios with high user density, correlations arise both between signals from different users and between signals from different subcarriers. Accordingly, the convolutional neural network (CNN) module and graph neural network (GNN) module included in the proposed NMBEnet can leverage these two correlations to further enhance the precision of beam training.
Abstract:This paper proposes a novel localization algorithm using the reconfigurable intelligent surface (RIS) received signal, i.e., RIS information. Compared with BS received signal, i.e., BS information, RIS information offers higher dimension and richer feature set, thereby providing an enhanced capacity to distinguish positions of the mobile users (MUs). Additionally, we address a practical scenario where RIS contains some unknown (number and places) faulty elements that cannot receive signals. Initially, we employ transfer learning to design a two-phase transfer learning (TPTL) algorithm, designed for accurate detection of faulty elements. Then our objective is to regain the information lost from the faulty elements and reconstruct the complete high-dimensional RIS information for localization. To this end, we propose a transfer-enhanced dual-stage (TEDS) algorithm. In \emph{Stage I}, we integrate the CNN and variational autoencoder (VAE) to obtain the RIS information, which in \emph{Stage II}, is input to the transferred DenseNet 121 to estimate the location of the MU. To gain more insight, we propose an alternative algorithm named transfer-enhanced direct fingerprint (TEDF) algorithm which only requires the BS information. The comparison between TEDS and TEDF reveals the effectiveness of faulty element detection and the benefits of utilizing the high-dimensional RIS information for localization. Besides, our empirical results demonstrate that the performance of the localization algorithm is dominated by the high-dimensional RIS information and is robust to unoptimized phase shifts and signal-to-noise ratio (SNR).
Abstract:Reconfigurable intelligent surface (RIS)-aided localization systems have attracted extensive research attention due to their accuracy enhancement capabilities. However, most studies primarily utilized the base stations (BS) received signal, i.e., BS information, for localization algorithm design, neglecting the potential of RIS received signal, i.e., RIS information. Compared with BS information, RIS information offers higher dimension and richer feature set, thereby significantly improving the ability to extract positions of the mobile users (MUs). Addressing this oversight, this paper explores the algorithm design based on the high-dimensional RIS information. Specifically, we first propose a RIS information reconstruction (RIS-IR) algorithm to reconstruct the high-dimensional RIS information from the low-dimensional BS information. The proposed RIS-IR algorithm comprises a data processing module for preprocessing BS information, a convolution neural network (CNN) module for feature extraction, and an output module for outputting the reconstructed RIS information. Then, we propose a transfer learning based fingerprint (TFBF) algorithm that employs the reconstructed high-dimensional RIS information for MU localization. This involves adapting a pre-trained DenseNet-121 model to map the reconstructed RIS signal to the MU's three-dimensional (3D) position. Empirical results affirm that the localization performance is significantly influenced by the high-dimensional RIS information and maintains robustness against unoptimized phase shifts.
Abstract:In this paper, we investigate a double-active-reconfigurable intelligent surface (RIS)-aided downlink wireless communication system, where a multi-antenna base station (BS) serves multiple single-antenna users with both double reflection and single reflection links. Due to the signal amplification capability of active RISs, the mutual influence between active RISs, which is termed as the "inter-excitation" effect, cannot be ignored. Then, we develop a feedback-type model to characterize the signal containing the inter-excitation effect. Based on the signal model, we formulate a weighted sum rate (WSR) maximization problem by jointly optimizing the beamforming matrix at the BS and the reflecting coefficient matrices at the two active RISs, subject to power constraints at the BS and active RISs, as well as the maximum amplification gain constraints of the active RISs. To solve this non-convex problem, we first transform the problem into a more tractable form using the fractional programming (FP) method. Then, by introducing auxiliary variables, the problem can be converted into an equivalent form that can be solved by using a low-complexity penalty dual decomposition (PDD) algorithm. Finally, simulation results indicate that it is crucial to consider the inter-excitation effect between active RISs in beamforming design for double-active-RIS-aided communication systems. Additionally, it prevails over other benchmark schemes with single active RIS and double passive RISs in terms of achievable rate.
Abstract:This paper investigates a reconfigurable intelligent surface (RIS)-aided wideband massive multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system with low-resolution analog-to-digital converters (ADCs). Frequency-selective Rician fading channels are considered, and the OFDM data transmission process is presented in time domain. This paper derives the closed-form approximate expression of the uplink achievable rate, based on which the asymptotic system performance is analyzed when the number of the antennas at the base station and the number of reflecting elements at the RIS grow to infinity. Besides, the power scaling laws of the considered system are revealed to provide energy-saving insights. Furthermore, this paper proposes a gradient ascent-based algorithm to design the phase shifts of the RIS for maximizing the minimum user rate. Finally, numerical results are presented to verify the correctness of analytical conclusions and draw insights.
Abstract:This paper considers a movable antenna (MA)-aided secure multiple-input multiple-output (MIMO) communication system consisting of a base station (BS), a legitimate information receiver (IR) and an eavesdropper (Eve), where the BS is equipped with MAs to enhance the system's physical layer security (PLS). Specifically, we aim to maximize the secrecy rate (SR) by jointly optimizing the transmit precoding (TPC) matrix, the artificial noise (AN) covariance matrix and the MAs' positions under the constraints of the maximum transmit power and the minimum distance between MAs. To solve this non-convex problem with highly coupled optimization variables, the block coordinate descent (BCD) method is applied to alternately update the variables. Specifically, we first reformulate the SR into a tractable form by utilizing the minimum mean square error (MMSE) method, and derive the optimal TPC matrix and the AN covariance matrix with fixed MAs' positions by applying the Lagrangian multiplier method in semi-closed forms. Then, the majorization-minimization (MM) algorithm is employed to iteratively optimize each MA's position while keeping others fixed. Finally, simulation results are provided to demonstrate the effectiveness of the proposed algorithms and the significant advantages of the MA-aided system over conventional fixed position antenna (FPA)-based system in enhancing system's security.
Abstract:In this paper, we consider the time-varying channel estimation in millimeter wave (mmWave) multiple-input multiple-output MIMO systems with hybrid beamforming architectures. Different from the existing contributions that considered single-carrier mmWave systems with high mobility, the wideband orthogonal frequency division multiplexing (OFDM) system is considered in this work. To solve the channel estimation problem under channel double selectivity, we propose a pilot transmission scheme based on 5G OFDM, and the received signals are formed as a fourth-order tensor, which fits the low-rank CANDECOMP/PARAFAC (CP) model. By further exploring the Vandermonde structure of factor matrix, a tensor-subspace decomposition based channel estimation method is proposed to solve the CP decomposition, where the uniqueness condition is analyzed. Based on the decomposed factor matrices, the channel parameters, including angles of arrival/departure, delays, channel gains and Doppler shifts are estimated, and the Cram\'{e}r-Rao bound (CRB) results are derived as performance metrics. Simulation results demonstrate the superior performance of the proposed method over other benchmarks. Furthermore, the channel estimation methods are tested based on the channel parameters generated by Wireless InSites, and simulation results show the effectiveness of the proposed method in practical scenarios.