Abstract:Open-vocabulary semantic segmentation seeks to label each pixel in an image with arbitrary text descriptions. Vision-language foundation models, especially CLIP, have recently emerged as powerful tools for acquiring open-vocabulary capabilities. However, fine-tuning CLIP to equip it with pixel-level prediction ability often suffers three issues: 1) high computational cost, 2) misalignment between the two inherent modalities of CLIP, and 3) degraded generalization ability on unseen categories. To address these issues, we propose H-CLIP a symmetrical parameter-efficient fine-tuning (PEFT) strategy conducted in hyperspherical space for both of the two CLIP modalities. Specifically, the PEFT strategy is achieved by a series of efficient block-diagonal learnable transformation matrices and a dual cross-relation communication module among all learnable matrices. Since the PEFT strategy is conducted symmetrically to the two CLIP modalities, the misalignment between them is mitigated. Furthermore, we apply an additional constraint to PEFT on the CLIP text encoder according to the hyperspherical energy principle, i.e., minimizing hyperspherical energy during fine-tuning preserves the intrinsic structure of the original parameter space, to prevent the destruction of the generalization ability offered by the CLIP text encoder. Extensive evaluations across various benchmarks show that H-CLIP achieves new SOTA open-vocabulary semantic segmentation results while only requiring updating approximately 4% of the total parameters of CLIP.
Abstract:Adapting pre-trained foundation models for various downstream tasks has been prevalent in artificial intelligence. Due to the vast number of tasks and high costs, adjusting all parameters becomes unfeasible. To mitigate this, several fine-tuning techniques have been developed to update the pre-trained model weights in a more resource-efficient manner, such as through low-rank adjustments. Yet, almost all of these methods focus on linear weights, neglecting the intricacies of parameter spaces in higher dimensions like 4D. Alternatively, some methods can be adapted for high-dimensional parameter space by compressing changes in the original space into two dimensions and then employing low-rank matrix decomposition. However, these approaches destructs the structural integrity of the involved high-dimensional spaces. To tackle the diversity of dimensional spaces across different foundation models and provide a more precise representation of the changes within these spaces, this paper introduces a generalized parameter-efficient fine-tuning framework, FLoRA, designed for various dimensional parameter space. Specifically, utilizing Tucker decomposition, FLoRA asserts that changes in each dimensional parameter space are based on a low-rank core space which maintains the consistent topological structure with the original space. It then models the changes through this core space alongside corresponding weights to reconstruct alterations in the original space. FLoRA effectively preserves the structural integrity of the change of original N-dimensional parameter space, meanwhile decomposes it via low-rank tensor decomposition. Extensive experiments on computer vision, natural language processing and multi-modal tasks validate FLoRA's effectiveness. Codes are available at https://github.com/SJTU-DeepVisionLab/FLoRA.
Abstract:Flow image super-resolution (FISR) aims at recovering high-resolution turbulent velocity fields from low-resolution flow images. Existing FISR methods mainly process the flow images in natural image patterns, while the critical and distinct flow visual properties are rarely considered. This negligence would cause the significant domain gap between flow and natural images to severely hamper the accurate perception of flow turbulence, thereby undermining super-resolution performance. To tackle this dilemma, we comprehensively consider the flow visual properties, including the unique flow imaging principle and morphological information, and propose the first flow visual property-informed FISR algorithm. Particularly, different from natural images that are constructed by independent RGB channels in the light field, flow images build on the orthogonal UVW velocities in the flow field. To empower the FISR network with an awareness of the flow imaging principle, we propose quaternion spatial modeling to model this orthogonal spatial relationship for improved FISR. Moreover, due to viscosity and surface tension characteristics, fluids often exhibit a droplet-like morphology in flow images. Inspired by this morphological property, we design the dynamic flow convolution to effectively mine the morphological information to enhance FISR. Extensive experiments on the newly acquired flow image datasets demonstrate the state-of-the-art performance of our method. Code and data will be made available.
Abstract:Prompt learning has emerged as an effective and data-efficient technique in large Vision-Language Models (VLMs). However, when adapting VLMs to specialized domains such as remote sensing and medical imaging, domain prompt learning remains underexplored. While large-scale domain-specific foundation models can help tackle this challenge, their concentration on a single vision level makes it challenging to prompt both vision and language modalities. To overcome this, we propose to leverage domain-specific knowledge from domain-specific foundation models to transfer the robust recognition ability of VLMs from generalized to specialized domains, using quaternion networks. Specifically, the proposed method involves using domain-specific vision features from domain-specific foundation models to guide the transformation of generalized contextual embeddings from the language branch into a specialized space within the quaternion networks. Moreover, we present a hierarchical approach that generates vision prompt features by analyzing intermodal relationships between hierarchical language prompt features and domain-specific vision features. In this way, quaternion networks can effectively mine the intermodal relationships in the specific domain, facilitating domain-specific vision-language contrastive learning. Extensive experiments on domain-specific datasets show that our proposed method achieves new state-of-the-art results in prompt learning.
Abstract:Parameter-efficient fine-tuning (PEFT) is an effective methodology to unleash the potential of large foundation models in novel scenarios with limited training data. In the computer vision community, PEFT has shown effectiveness in image classification, but little research has studied its ability for image segmentation. Fine-tuning segmentation models usually require a heavier adjustment of parameters to align the proper projection directions in the parameter space for new scenarios. This raises a challenge to existing PEFT algorithms, as they often inject a limited number of individual parameters into each block, which prevents substantial adjustment of the projection direction of the parameter space due to the limitation of Hidden Markov Chain along blocks. In this paper, we equip PEFT with a cross-block orchestration mechanism to enable the adaptation of the Segment Anything Model (SAM) to various downstream scenarios. We introduce a novel inter-block communication module, which integrates a learnable relation matrix to facilitate communication among different coefficient sets of each PEFT block's parameter space. Moreover, we propose an intra-block enhancement module, which introduces a linear projection head whose weights are generated from a hyper-complex layer, further enhancing the impact of the adjustment of projection directions on the entire parameter space. Extensive experiments on diverse benchmarks demonstrate that our proposed approach consistently improves the segmentation performance significantly on novel scenarios with only around 1K additional parameters.
Abstract:Large pre-trained vision-language models, such as CLIP, have shown remarkable generalization capabilities across various tasks when appropriate text prompts are provided. However, adapting these models to specialized domains, like remote sensing images (RSIs), medical images, etc, remains unexplored and challenging. Existing prompt learning methods often lack domain-awareness or domain-transfer mechanisms, leading to suboptimal performance due to the misinterpretation of specialized images in natural image patterns. To tackle this dilemma, we proposed a Domain-Controlled Prompt Learning for the specialized domains. Specifically, the large-scale specialized domain foundation model (LSDM) is first introduced to provide essential specialized domain knowledge. Using lightweight neural networks, we transfer this knowledge into domain biases, which control both the visual and language branches to obtain domain-adaptive prompts in a directly incorporating manner. Simultaneously, to overcome the existing overfitting challenge, we propose a novel noisy-adding strategy, without extra trainable parameters, to help the model escape the suboptimal solution in a global domain oscillation manner. Experimental results show our method achieves state-of-the-art performance in specialized domain image recognition datasets. Our code is available at https://anonymous.4open.science/r/DCPL-8588.
Abstract:Segment Anything Model (SAM) has received remarkable attention as it offers a powerful and versatile solution for object segmentation in images. However, fine-tuning SAM for downstream segmentation tasks under different scenarios remains a challenge, as the varied characteristics of different scenarios naturally requires diverse model parameter spaces. Most existing fine-tuning methods attempt to bridge the gaps among different scenarios by introducing a set of new parameters to modify SAM's original parameter space. Unlike these works, in this paper, we propose fine-tuning SAM efficiently by parameter space reconstruction (SAM-PARSER), which introduce nearly zero trainable parameters during fine-tuning. In SAM-PARSER, we assume that SAM's original parameter space is relatively complete, so that its bases are able to reconstruct the parameter space of a new scenario. We obtain the bases by matrix decomposition, and fine-tuning the coefficients to reconstruct the parameter space tailored to the new scenario by an optimal linear combination of the bases. Experimental results show that SAM-PARSER exhibits superior segmentation performance across various scenarios, while reducing the number of trainable parameters by $\approx 290$ times compared with current parameter-efficient fine-tuning methods.