Abstract:Typical reconfigurable intelligent surface (RIS) implementations include metasurfaces with almost passive unit elements capable of reflecting their incident waves in controllable ways, enhancing wireless communications in a cost-effective manner. In this paper, we advance the concept of intelligent metasurfaces by introducing a flexible array geometry, termed flexible intelligent metasurface (FIM), which supports both element movement (EM) and passive beamforming (PBF). In particular, based on the single-input single-output (SISO) system setup, we first compare three modes of FIM, namely, EM-only, PBF-only, and EM-PBF, in terms of received signal power under different FIM and channel setups. The PBF-only mode, which only adjusts the reflect phase, is shown to be less effective than the EM-only mode in enhancing received signal strength. In a multi-element, multi-path scenario, the EM-only mode improves the received signal power by 125% compared to the PBF-only mode. The EM-PBF mode, which optimizes both element positions and phases, further enhances performance. Additionally, we investigate the channel estimation problem for FIM systems by designing a protocol that gathers EM and PBF measurements, enabling the formulation of a compressive sensing problem for joint cascaded and direct channel estimation. We then propose a sparse recovery algorithm called clustering mean-field variational sparse Bayesian learning, which enhances estimation performance while maintaining low complexity.
Abstract:Flexible-geometry arrays have garnered much attention in wireless communications, which dynamically adjust wireless channels to improve the system performance. In this paper, we propose a novel flexible-geometry array for a $360^\circ$ coverage, named flxible cylindrical array (FCLA), comprised of multiple flexible circular arrays (FCAs). The elements in each FCA can revolve around the circle track to change their horizontal positions, and the FCAs can move along the vertical axis to change the elements' heights. Considering that horizontal revolving can change the antenna orientation, we adopt both the omni-directional and the directional antenna patterns. Based on the regularized zero-forcing (RZF) precoding scheme, we formulate a particular compressive sensing (CS) problem incorporating joint precoding and antenna position optimization, and propose two effective methods, namely FCLA-J and FCLA-A, to solve it. Specifically, the first method involves jointly optimizing the element's revolving angle, height, and precoding coefficient within a single CS framework. The second method decouples the CS problem into two subproblems by utilizing an alternative sparse optimization approach for the revolving angle and height, thereby reducing time complexity. Simulation results reveal that, when utilizing directional radiation patterns, FCLA-J and FCLA-A achieve substantial performance improvements of 43.32\% and 25.42\%, respectively, compared to uniform cylindrical arrays (UCLAs) with RZF precoding.
Abstract:Analog beamforming holds great potential for future terahertz (THz) communications due to its ability to generate high-gain directional beams with low-cost phase shifters.However, conventional analog beamforming may suffer substantial performance degradation in wideband systems due to the beam-squint effects. Instead of relying on high-cost true time delayers, we propose in this paper an efficient three-dimensional (3D) rotatable antenna technology to mitigate the beam-squint effects, motivated by the fact that beam squint disappears along the boresight direction. In particular, we focus on a wideband wide-beam coverage problem in this paper, aiming to maximize the minimum beamforming gain within a given angle and frequency range by jointly optimizing the analog beamforming vector and the 3D rotation angles of the antenna array. However, this problem is non-convex and difficult to be optimally solved due to the coupling of the spatial and frequency domains and that of the antenna weights and rotation. To tackle this issue, we first reformulate the problem into an equivalent form by merging the spatial and frequency domains into a single composite domain. Next, we combine alternating optimization (AO) and successive convex approximation (SCA) algorithms to optimize the analog beamforming and rotation angles within this composite domain. Simulation results demonstrate that the proposed scheme can significantly outperform conventional schemes without antenna rotation, thus offering a cost-effective solution for wideband transmission over THz bands.
Abstract:This paper proposes a new hierarchically tunable six-dimensional movable antenna (HT-6DMA) architecture for base station (BS) in future wireless networks. The HT-6DMA BS consists of multiple antenna arrays that can flexibly move on a spherical surface, with their three-dimensional (3D) positions and 3D rotations/orientations efficiently characterized in the global spherical coordinate system (SCS) and their individual local SCSs, respectively. As a result, the 6DMA system is hierarchically tunable in the sense that each array's global position and local rotation can be separately adjusted in a sequential manner with the other being fixed, thus greatly reducing their design complexity and improving the achievable performance. In particular, we consider an HT-6DMA BS serving multiple single-antenna users in the uplink communication or sensing potential unmanned aerial vehicles (UAVs)/drones in a given airway area. Specifically, for the communication scenario, we aim to maximize the average sum rate of communication users in the long term by optimizing the positions and rotations of all 6DMA arrays at the BS. While for the airway sensing scenario, we maximize the minimum received sensing signal power along the airway by optimizing the 6DMA arrays' positions and rotations along with the BS's transmit covariance matrix. Despite that the formulated problems are both non-convex, we propose efficient solutions to them by exploiting the hierarchical tunability of positions/rotations of 6DMA arrays in our proposed model. Numerical results show that the proposed HT-6DMA design significantly outperforms not only the traditional BS with fixed-position antennas (FPAs), but also the existing 6DMA scheme. Furthermore, it is unveiled that the performance gains of HT-6DMA mostly come from the arrays' global position adjustments on the spherical surface, rather than their local rotation adjustments.
Abstract:Movable antenna (MA) has been recognized as a promising technology to enhance the performance of wireless communication and sensing by enabling antenna movement. Such a significant paradigm shift from conventional fixed antennas (FAs) to MAs offers tremendous new opportunities towards realizing more versatile, adaptive and efficient next-generation wireless networks such as 6G. In this paper, we provide a comprehensive tutorial on the fundamentals and advancements in the area of MA-empowered wireless networks. First, we overview the historical development and contemporary applications of MA technologies. Next, to characterize the continuous variation in wireless channels with respect to antenna position and/or orientation, we present new field-response channel models tailored for MAs, which are applicable to narrowband and wideband systems as well as far-field and near-field propagation conditions. Subsequently, we review the state-of-the-art architectures for implementing MAs and discuss their practical constraints. A general optimization framework is then formulated to fully exploit the spatial degrees of freedom (DoFs) in antenna movement for performance enhancement in wireless systems. In particular, we delve into two major design issues for MA systems. First, we address the intricate antenna movement optimization problem for various communication and/or sensing systems to maximize the performance gains achievable by MAs. Second, we deal with the challenging channel acquisition issue in MA systems for reconstructing the channel mapping between arbitrary antenna positions inside the transmitter and receiver regions. Moreover, we show existing prototypes developed for MA-aided communication/sensing and the experimental results based on them. Finally, the extension of MA design to other wireless systems and its synergy with other emerging wireless technologies are discussed.
Abstract:Movable antennas (MAs) show great promise for enhancing the sensing capabilities of future sixth-generation (6G) networks. With the growing prevalence of near-field propagation at ultra-high frequencies, this paper focuses on the application of MAs for near-field sensing to jointly estimate the angle and distance information of a target. First, to gain essential insights into MA-enhanced near-field sensing, we investigate two simplified cases with only the spatial angle-of-arrival (AoA) or distance estimation, respectively, assuming that the other information is already known. We derive the worst-case Cramer-Rao bounds (CRBs) on the mean square errors (MSEs) of the AoA estimation and the distance estimation via the multiple signal classification (MUSIC) algorithm in these two cases. Then, we jointly optimize the positions of the MAs within a linear array to minimize these CRBs and derive their closed-form solutions, which yield an identical array geometry to MA-aided far-field sensing. Furthermore, we proceed to the more challenging case with the joint AoA and distance estimation and derive the worst-case CRB under the two-dimensional (2D) MUSIC algorithm. The corresponding CRB minimization problem is efficiently solved by adopting a discrete sampling-based approach. Numerical results demonstrate that the proposed MA-enhanced near-field sensing significantly outperforms conventional sensing with fixed-position antennas (FPAs). Moreover, the joint angle and distance estimation results in a different array geometry from that in the individual estimation of angle or distance.
Abstract:Reconfigurable intelligent surfaces (RISs) can be densely deployed in the environment to create multi-reflection line-of-sight (LoS) links for signal coverage enhancement. However, conventional reflection-only RISs can only achieve half-space reflection, which limits the LoS path diversity. In contrast, simultaneously transmitting and reflecting RISs (STAR-RISs) can achieve full-space reflection and transmission, thereby creating more LoS paths. Hence, in this paper, we study a new multi-STAR-RIS-aided communication system, where a multi-antenna base station (BS) transmits to multiple single-antenna users by exploiting the signal beam routing over a set of cascaded LoS paths each formed by multiple STAR-RISs. To reveal essential insights, we first consider a simplified single-user case, aiming to maximize its received signal power by jointly optimizing the active beamforming at the BS, the BS's power allocation over different paths, the number of selected beam-routing paths, the selected STAR-RISs for each path, as well as their amplitude and phase shifts for transmission/reflection. However, this problem is difficult to be optimally solved as different paths may be intricately coupled at their shared STAR-RISs. To tackle this difficulty, we first derive the optimal solution to this problem in closed-form for a given set of paths. The clique-based approach in graph theory is then applied to solve the remaining multi-path selection problem efficiently. Next, we extend the proposed clique-based method to the multi-user case to maximize the minimum received signal power among all users, subject to additional constraints on the disjointness of the selected paths for different users. Simulation results show that our proposed STAR-RIS-enabled beam routing outperforms the conventional beam routing with reflection-only RISs in both single- and multi-user cases.
Abstract:Movable antenna (MA) has been deemed as a promising technology to flexibly reconfigure wireless channels by adjusting the antenna positions in a given local region. In this paper, we investigate the application of the MA technology in both decode-and-forward (DF) and amplify-and-forward (AF) relaying systems, where a relay is equipped with multiple MAs to assist in the data transmission between two single-antenna nodes. For the DF relaying system, our objective is to maximize the achievable rate at the destination by jointly optimizing the positions of the MAs in two stages for receiving signals from the source and transmitting signals to the destination, respectively. To drive essential insights, we first derive a closed-form upper bound on the maximum achievable rate of the DF relaying system. Then, a low-complexity algorithm based on projected gradient ascent (PGA) and alternating optimization (AO) is proposed to solve the antenna position optimization problem. For the AF relaying system, our objective is to maximize the achievable rate by jointly optimizing the two-stage MA positions as well as the AF beamforming matrix at the relay, which results in a more challenging optimization problem due to the intricate coupling variables. To tackle this challenge, we first reveal the hidden separability among the antenna position optimization in the two stages and the beamforming optimization. Based on such separability, we derive a closed-form upper bound on the maximum achievable rate of the AF relaying system and propose a low-complexity algorithm to obtain a high-quality suboptimal solution to the considered problem. Simulation results validate the efficacy of our theoretical analysis and demonstrate the superiority of the MA-enhanced relaying systems to the conventional relaying systems with fixed-position antennas (FPAs) and other benchmark schemes.
Abstract:Intelligent reflecting surface (IRS) is composed of numerous passive reflecting elements and can be mounted on unmanned aerial vehicles (UAVs) to achieve six-dimensional (6D) movement by adjusting the UAV's three-dimensional (3D) location and 3D orientation simultaneously. Hence, in this paper, we investigate a new UAV-enabled passive 6D movable antenna (6DMA) architecture by mounting an IRS on a UAV and address the associated joint deployment and beamforming optimization problem. In particular, we consider a passive 6DMA-aided multicast system with a multi-antenna base station (BS) and multiple remote users, aiming to jointly optimize the IRS's location and 3D orientation, as well as its passive beamforming to maximize the minimum received signal-to-noise ratio (SNR) among all users under the practical angle-dependent signal reflection model. However, this optimization problem is challenging to be optimally solved due to the intricate relationship between the users' SNRs and the IRS's location and orientation. To tackle this challenge, we first focus on a simplified case with a single user, showing that one-dimensional (1D) orientation suffices to achieve the optimal performance. Next, we show that for any given IRS's location, the optimal 1D orientation can be derived in closed form, based on which several useful insights are drawn. To solve the max-min SNR problem in the general multi-user case, we propose an alternating optimization (AO) algorithm by alternately optimizing the IRS's beamforming and location/orientation via successive convex approximation (SCA) and hybrid coarse- and fine-grained search, respectively. To avoid undesirable local sub-optimal solutions, a Gibbs sampling (GS) method is proposed to generate new IRS locations and orientations for exploration in each AO iteration. Numerical results validate our theoretical analyses.
Abstract:In this paper, we model the minimum achievable throughput within a transmission block of restricted duration and aim to maximize it in movable antenna (MA)-enabled multiuser downlink communications. Particularly, we account for the antenna moving delay caused by mechanical movement, which has not been fully considered in previous studies, and reveal the trade-off between the delay and signal-to-interference-plus-noise ratio at users. To this end, we first consider a single-user setup to analyze the necessity of antenna movement. By quantizing the virtual angles of arrival, we derive the requisite region size for antenna moving, design the initial MA position, and elucidate the relationship between quantization resolution and moving region size. Furthermore, an efficient algorithm is developed to optimize MA position via successive convex approximation, which is subsequently extended to the general multiuser setup. Numerical results demonstrate that the proposed algorithms outperform fixed-position antenna schemes and existing ones without consideration of movement delay. Additionally, our algorithms exhibit excellent adaptability and stability across various transmission block durations and moving region sizes, and are robust to different antenna moving speeds. This allows the hardware cost of MA-aided systems to be reduced by employing low rotational speed motors.