Abstract:Intelligent reflecting surface (IRS) is composed of numerous passive reflecting elements and can be mounted on unmanned aerial vehicles (UAVs) to achieve six-dimensional (6D) movement by adjusting the UAV's three-dimensional (3D) location and 3D orientation simultaneously. Hence, in this paper, we investigate a new UAV-enabled passive 6D movable antenna (6DMA) architecture by mounting an IRS on a UAV and address the associated joint deployment and beamforming optimization problem. In particular, we consider a passive 6DMA-aided multicast system with a multi-antenna base station (BS) and multiple remote users, aiming to jointly optimize the IRS's location and 3D orientation, as well as its passive beamforming to maximize the minimum received signal-to-noise ratio (SNR) among all users under the practical angle-dependent signal reflection model. However, this optimization problem is challenging to be optimally solved due to the intricate relationship between the users' SNRs and the IRS's location and orientation. To tackle this challenge, we first focus on a simplified case with a single user, showing that one-dimensional (1D) orientation suffices to achieve the optimal performance. Next, we show that for any given IRS's location, the optimal 1D orientation can be derived in closed form, based on which several useful insights are drawn. To solve the max-min SNR problem in the general multi-user case, we propose an alternating optimization (AO) algorithm by alternately optimizing the IRS's beamforming and location/orientation via successive convex approximation (SCA) and hybrid coarse- and fine-grained search, respectively. To avoid undesirable local sub-optimal solutions, a Gibbs sampling (GS) method is proposed to generate new IRS locations and orientations for exploration in each AO iteration. Numerical results validate our theoretical analyses.
Abstract:Movable antennas (MAs), traditionally explored in antenna design, have recently garnered significant attention in wireless communications due to their ability to dynamically adjust the antenna positions to changes in the propagation environment. However, previous research has primarily focused on characterizing the performance limits of various MA-assisted wireless communication systems, with less emphasis on their practical implementation. To address this gap, in this article, we propose several general MA architectures that extend existing designs by varying several key aspects to cater to different application scenarios and tradeoffs between cost and performance. Additionally, we draw from fields such as antenna design and mechanical control to provide an overview of candidate implementation methods for the proposed MA architectures, utilizing either direct mechanical or equivalent electronic control. Simulation results are finally presented to support our discussion.
Abstract:In this paper, we consider the problem of joint transceiver design for millimeter wave (mmWave)/Terahertz (THz) multi-user MIMO integrated sensing and communication (ISAC) systems. Such a problem is formulated into a nonconvex optimization problem, with the objective of maximizing a weighted sum of communication users' rates and the passive radar's signal-to-clutter-and-noise-ratio (SCNR). By exploring a low-dimensional subspace property of the optimal precoder, a low-complexity block-coordinate-descent (BCD)-based algorithm is proposed. Our analysis reveals that the hybrid analog/digital beamforming structure can attain the same performance as that of a fully digital precoder, provided that the number of radio frequency (RF) chains is no less than the number of resolvable signal paths. Also, through expressing the precoder as a sum of a communication-precoder and a sensing-precoder, we develop an analytical solution to the joint transceiver design problem by generalizing the idea of block-diagonalization (BD) to the ISAC system. Simulation results show that with a proper tradeoff parameter, the proposed methods can achieve a decent compromise between communication and sensing, where the performance of each communication/sensing task experiences only a mild performance loss as compared with the performance attained by optimizing exclusively for a single task.
Abstract:Intelligent reflecting surface (IRS) has been widely recognized as an efficient technique to reconfigure the electromagnetic environment in favor of wireless communication performance. In this paper, we propose a new application of IRS for device-free target sensing via joint location and orientation estimation. In particular, different from the existing works that use IRS as an additional anchor node for localization/sensing, we consider mounting IRS on the sensing target, whereby estimating the IRS's location and orientation as that of the target by leveraging IRS's controllable signal reflection. To this end, we first propose a tensor-based method to acquire essential angle information between the IRS and the sensing transmitter as well as a set of distributed sensing receivers. Next, based on the estimated angle information, we formulate two optimization problems to estimate the location and orientation of the IRS/target, respectively, and obtain the locally optimal solutions to them by invoking two iterative algorithms, namely, gradient descent method and manifold optimization. In particular, we show that the orientation estimation problem admits a closed-form solution in a special case that usually holds in practice. Furthermore, theoretical analysis is conducted to draw essential insights into the proposed sensing system design and performance. Simulation results verify our theoretical analysis and demonstrate that the proposed methods can achieve high estimation accuracy which is close to the theoretical bound.
Abstract:We consider the problem of channel estimation and joint active and passive beamforming for reconfigurable intelligent surface (RIS) assisted millimeter wave (mmWave) multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems. We show that, with a well-designed frame-based training protocol, the received pilot signal can be organized into a low-rank third-order tensor that admits a canonical polyadic decomposition (CPD). Based on this observation, we propose two CPD-based methods for estimating the cascade channels associated with different subcarriers. The proposed methods exploit the intrinsic low-rankness of the CPD formulation, which is a result of the sparse scattering characteristics of mmWave channels, and thus have the potential to achieve a significant training overhead reduction. Specifically, our analysis shows that the proposed methods have a sample complexity that scales quadratically with the sparsity of the cascade channel. Also, by utilizing the singular value decomposition-like structure of the effective channel, this paper develops a joint active and passive beamforming method based on the estimated cascade channels. Simulation results show that the proposed CPD-based channel estimation methods attain mean square errors that are close to the Cramer-Rao bound (CRB) and present a clear advantage over the compressed sensing-based method. In addition, the proposed joint beamforming method can effectively utilize the estimated channel parameters to achieve superior beamforming performance.
Abstract:We consider the problem of downlink channel estimation for intelligent reflecting surface (IRS)-assisted millimeter Wave (mmWave) orthogonal frequency division multiplexing (OFDM) systems. By exploring the inherent sparse scattering characteristics of mmWave channels, we show that the received signals can be expressed as a low-rank third-order tensor that admits a tensor rank decomposition, also known as canonical polyadic decomposition (CPD). A structured CPD-based method is then developed to estimate the channel parameters. Our analysis reveals that the training overhead required by our proposed method is as low as O(U^2), where U denotes the sparsity of the cascade channel. Simulation results are provided to illustrate the efficiency of the proposed method.
Abstract:Reconfigurable intelligent surface (RIS) has recently emerged as a promising paradigm for future cellular networks. Specifically, due to its capability in reshaping the propagation environment, RIS was introduced to address the blockage issue in millimeter Wave (mmWave) or even Terahertz (THz) communications. The deployment of RIS, however, complicates the system architecture and poses a significant challenge for beam training (BT)/ beam alignment (BA), a process that is required to establish a reliable link between the transmitter and the receiver. In this article, we first review several state-of-the-art beam training solutions for RIS-assisted mmWave systems and discuss their respective advantages and limitations. We also present a new multi-directional BT method, which can achieve a decent BA performance with only a small amount of training overhead. Finally, we outline several important open issues in BT for RIS-assisted mmWave systems.
Abstract:Integrated sensing and communication enables sensing capability for wireless networks. However, the interference management and resource allocation between sensing and communication have not been fully studied. In this paper, we consider the design of perceptive mobile networks (PMNs) by adding sensing capability to current cellular networks. To avoid the full-duplex operation and reduce interference, we propose the PMN with distributed target monitoring terminals (TMTs) where passive TMTs are deployed over wireless networks to locate the sensing target (ST). We then jointly optimize the transmit and receive beamformers towards the communication user terminals (UEs) and the ST by alternating-optimization (AO) and prove its convergence. To reduce computation complexity and obtain physical insights, we further investigate the use of linear transceivers, including zero forcing and beam synthesis (B-syn), and show that B-syn can achieve comparable sensing performance as AO especially when the communication requirement is high. Some interesting physical insights are also revealed. For example, instead of forming a dedicated sensing signal, it is more efficient to jointly design the communication signals for different UEs such that they ``collaboratively leak" energy to the ST. Furthermore, the amount of energy leakage from one UE to the ST depends on their relative locations.
Abstract:Intelligent reflecting surface (IRS) has emerged as a competitive solution to address blockage issues in millimeter wave (mmWave) and Terahertz (THz) communications due to its capability of reshaping wireless transmission environments. Nevertheless, obtaining the channel state information of IRS-assisted systems is quite challenging because of the passive characteristics of the IRS. In this paper, we consider the problem of beam training/alignment for IRS-assisted downlink mmWave/THz systems, where a multi-antenna base station (BS) with a hybrid structure serves a single-antenna user aided by IRS. By exploiting the inherent sparse structure of the BS-IRS-user cascade channel, the beam training problem is formulated as a joint sparse sensing and phaseless estimation problem, which involves devising a sparse sensing matrix and developing an efficient estimation algorithm to identify the best beam alignment from compressive phaseless measurements. Theoretical analysis reveals that the proposed method can identify the best alignment with only a modest amount of training overhead. Simulation results show that, for both line-of-sight (LOS) and NLOS scenarios, the proposed method obtains a significant performance improvement over existing state-of-art methods. Notably, it can achieve performance close to that of the exhaustive beam search scheme, while reducing the training overhead by 95%.