Abstract:Graph Neural Networks (GNNs) have achieved remarkable performance through their message-passing mechanism. However, recent studies have highlighted the vulnerability of GNNs to backdoor attacks, which can lead the model to misclassify graphs with attached triggers as the target class. The effectiveness of recent promising defense techniques, such as fine-tuning or distillation, is heavily contingent on having comprehensive knowledge of the sufficient training dataset. Empirical studies have shown that fine-tuning methods require a clean dataset of 20% to reduce attack accuracy to below 25%, while distillation methods require a clean dataset of 15%. However, obtaining such a large amount of clean data is commonly impractical. In this paper, we propose a practical backdoor mitigation framework, denoted as GRAPHNAD, which can capture high-quality intermediate-layer representations in GNNs to enhance the distillation process with limited clean data. To achieve this, we address the following key questions: How to identify the appropriate attention representations in graphs for distillation? How to enhance distillation with limited data? By adopting the graph attention transfer method, GRAPHNAD can effectively align the intermediate-layer attention representations of the backdoored model with that of the teacher model, forcing the backdoor neurons to transform into benign ones. Besides, we extract the relation maps from intermediate-layer transformation and enforce the relation maps of the backdoored model to be consistent with that of the teacher model, thereby ensuring model accuracy while further reducing the influence of backdoors. Extensive experimental results show that by fine-tuning a teacher model with only 3% of the clean data, GRAPHNAD can reduce the attack success rate to below 5%.
Abstract:As text-to-image (T2I) models continue to advance and gain widespread adoption, their associated safety issues are becoming increasingly prominent. Malicious users often exploit these models to generate Not-Safe-for-Work (NSFW) images using harmful or adversarial prompts, highlighting the critical need for robust safeguards to ensure the integrity and compliance of model outputs. Current internal safeguards frequently degrade image quality, while external detection methods often suffer from low accuracy and inefficiency. In this paper, we introduce AEIOU, a defense framework that is Adaptable, Efficient, Interpretable, Optimizable, and Unified against NSFW prompts in T2I models. AEIOU extracts NSFW features from the hidden states of the model's text encoder, utilizing the separable nature of these features to detect NSFW prompts. The detection process is efficient, requiring minimal inference time. AEIOU also offers real-time interpretation of results and supports optimization through data augmentation techniques. The framework is versatile, accommodating various T2I architectures. Our extensive experiments show that AEIOU significantly outperforms both commercial and open-source moderation tools, achieving over 95% accuracy across all datasets and improving efficiency by at least tenfold. It effectively counters adaptive attacks and excels in few-shot and multi-label scenarios.
Abstract:With the continuous development of large language models (LLMs), transformer-based models have made groundbreaking advances in numerous natural language processing (NLP) tasks, leading to the emergence of a series of agents that use LLMs as their control hub. While LLMs have achieved success in various tasks, they face numerous security and privacy threats, which become even more severe in the agent scenarios. To enhance the reliability of LLM-based applications, a range of research has emerged to assess and mitigate these risks from different perspectives. To help researchers gain a comprehensive understanding of various risks, this survey collects and analyzes the different threats faced by these agents. To address the challenges posed by previous taxonomies in handling cross-module and cross-stage threats, we propose a novel taxonomy framework based on the sources and impacts. Additionally, we identify six key features of LLM-based agents, based on which we summarize the current research progress and analyze their limitations. Subsequently, we select four representative agents as case studies to analyze the risks they may face in practical use. Finally, based on the aforementioned analyses, we propose future research directions from the perspectives of data, methodology, and policy, respectively.
Abstract:We study convex optimization problems under differential privacy (DP). With heavy-tailed gradients, existing works achieve suboptimal rates. The main obstacle is that existing gradient estimators have suboptimal tail properties, resulting in a superfluous factor of $d$ in the union bound. In this paper, we explore algorithms achieving optimal rates of DP optimization with heavy-tailed gradients. Our first method is a simple clipping approach. Under bounded $p$-th order moments of gradients, with $n$ samples, it achieves $\tilde{O}(\sqrt{d/n}+\sqrt{d}(\sqrt{d}/n\epsilon)^{1-1/p})$ population risk with $\epsilon\leq 1/\sqrt{d}$. We then propose an iterative updating method, which is more complex but achieves this rate for all $\epsilon\leq 1$. The results significantly improve over existing methods. Such improvement relies on a careful treatment of the tail behavior of gradient estimators. Our results match the minimax lower bound in \cite{kamath2022improved}, indicating that the theoretical limit of stochastic convex optimization under DP is achievable.
Abstract:User-level privacy is important in distributed systems. Previous research primarily focuses on the central model, while the local models have received much less attention. Under the central model, user-level DP is strictly stronger than the item-level one. However, under the local model, the relationship between user-level and item-level LDP becomes more complex, thus the analysis is crucially different. In this paper, we first analyze the mean estimation problem and then apply it to stochastic optimization, classification, and regression. In particular, we propose adaptive strategies to achieve optimal performance at all privacy levels. Moreover, we also obtain information-theoretic lower bounds, which show that the proposed methods are minimax optimal up to logarithmic factors. Unlike the central DP model, where user-level DP always leads to slower convergence, our result shows that under the local model, the convergence rates are nearly the same between user-level and item-level cases for distributions with bounded support. For heavy-tailed distributions, the user-level rate is even faster than the item-level one.
Abstract:Label differential privacy (DP) is a framework that protects the privacy of labels in training datasets, while the feature vectors are public. Existing approaches protect the privacy of labels by flipping them randomly, and then train a model to make the output approximate the privatized label. However, as the number of classes $K$ increases, stronger randomization is needed, thus the performances of these methods become significantly worse. In this paper, we propose a vector approximation approach, which is easy to implement and introduces little additional computational overhead. Instead of flipping each label into a single scalar, our method converts each label into a random vector with $K$ components, whose expectations reflect class conditional probabilities. Intuitively, vector approximation retains more information than scalar labels. A brief theoretical analysis shows that the performance of our method only decays slightly with $K$. Finally, we conduct experiments on both synthesized and real datasets, which validate our theoretical analysis as well as the practical performance of our method.
Abstract:Client selection significantly affects the system convergence efficiency and is a crucial problem in federated learning. Existing methods often select clients by evaluating each round individually and overlook the necessity for long-term optimization, resulting in suboptimal performance and potential fairness issues. In this study, we propose a novel client selection strategy designed to emulate the performance achieved with full client participation. In a single round, we select clients by minimizing the gradient-space estimation error between the client subset and the full client set. In multi-round selection, we introduce a novel individual fairness constraint, which ensures that clients with similar data distributions have similar frequencies of being selected. This constraint guides the client selection process from a long-term perspective. We employ Lyapunov optimization and submodular functions to efficiently identify the optimal subset of clients, and provide a theoretical analysis of the convergence ability. Experiments demonstrate that the proposed strategy significantly improves both accuracy and fairness compared to previous methods while also exhibiting efficiency by incurring minimal time overhead.
Abstract:The past few years have witnessed substantial advancement in text-guided image generation powered by diffusion models. However, it was shown that text-to-image diffusion models are vulnerable to training image memorization, raising concerns on copyright infringement and privacy invasion. In this work, we perform practical analysis of memorization in text-to-image diffusion models. Targeting a set of images to protect, we conduct quantitive analysis on them without need to collect any prompts. Specifically, we first formally define the memorization of image and identify three necessary conditions of memorization, respectively similarity, existence and probability. We then reveal the correlation between the model's prediction error and image replication. Based on the correlation, we propose to utilize inversion techniques to verify the safety of target images against memorization and measure the extent to which they are memorized. Model developers can utilize our analysis method to discover memorized images or reliably claim safety against memorization. Extensive experiments on the Stable Diffusion, a popular open-source text-to-image diffusion model, demonstrate the effectiveness of our analysis method.
Abstract:Choice problems refer to selecting the best choices from several items, and learning users' preferences in choice problems is of great significance in understanding the decision making mechanisms and providing personalized services. Existing works typically assume that people evaluate items independently. In practice, however, users' preferences depend on the market in which items are placed, which is known as context effects; and the order of users' preferences for two items may even be reversed, which is referred to preference reversals. In this work, we identify three factors contributing to context effects: users' adaptive weights, the inter-item comparison, and display positions. We propose a context-dependent preference model named Pacos as a unified framework for addressing three factors simultaneously, and consider two design methods including an additive method with high interpretability and an ANN-based method with high accuracy. We study the conditions for preference reversals to occur and provide an theoretical proof of the effectiveness of Pacos in addressing preference reversals. Experimental results show that the proposed method has better performance than prior works in predicting users' choices, and has great interpretability to help understand the cause of preference reversals.
Abstract:Users often face bundle promotions when purchasing, where they have to select between two options: buy the single item at full price, or buy the bundle at a discount. In this scenario, users' preferences are usually influenced by the projection bias, that is, users often believe that their future preferences are similar to their current preferences, causing them to make irrational and short-sighted decisions. It is of great significance to analyze the effect of the projection bias on users' preferences, and this study may help understand users' decision-making process and provide bundling and pricing strategies for sellers. Prior works typically use a linear bias model for qualitative analysis, and they cannot quantitatively calculate users' nonlinear and personalized bias. In this work, we propose Pobe, a projection bias-embedded preference model to accurately predict users' choices. The proposed Pobe introduces the prospect theory to analyze users' irrational decisions, and utilizes the weight function to handle users' nonlinear and personalized bias. Based on the proposed Pobe, we also study the impact of items' correlations or discount prices on users' choices, and provide four bundling strategies. Experimental results show that the proposed method can achieve better performance than prior works, especially when only small data is available.