Abstract:Recent studies have revealed that GNNs are highly susceptible to multiple adversarial attacks. Among these, graph backdoor attacks pose one of the most prominent threats, where attackers cause models to misclassify by learning the backdoored features with injected triggers and modified target labels during the training phase. Based on the features of the triggers, these attacks can be categorized into out-of-distribution (OOD) and in-distribution (ID) graph backdoor attacks, triggers with notable differences from the clean sample feature distributions constitute OOD backdoor attacks, whereas the triggers in ID backdoor attacks are nearly identical to the clean sample feature distributions. Existing methods can successfully defend against OOD backdoor attacks by comparing the feature distribution of triggers and clean samples but fail to mitigate stealthy ID backdoor attacks. Due to the lack of proper supervision signals, the main task accuracy is negatively affected in defending against ID backdoor attacks. To bridge this gap, we propose DMGNN against OOD and ID graph backdoor attacks that can powerfully eliminate stealthiness to guarantee defense effectiveness and improve the model performance. Specifically, DMGNN can easily identify the hidden ID and OOD triggers via predicting label transitions based on counterfactual explanation. To further filter the diversity of generated explainable graphs and erase the influence of the trigger features, we present a reverse sampling pruning method to screen and discard the triggers directly on the data level. Extensive experimental evaluations on open graph datasets demonstrate that DMGNN far outperforms the state-of-the-art (SOTA) defense methods, reducing the attack success rate to 5% with almost negligible degradation in model performance (within 3.5%).
Abstract:Recent studies have exposed that GNNs are vulnerable to several adversarial attacks, among which backdoor attack is one of the toughest. Similar to Deep Neural Networks (DNNs), backdoor attacks in GNNs lie in the fact that the attacker modifies a portion of graph data by embedding triggers and enforces the model to learn the trigger feature during the model training process. Despite the massive prior backdoor defense works on DNNs, defending against backdoor attacks in GNNs is largely unexplored, severely hindering the widespread application of GNNs in real-world tasks. To bridge this gap, we present GCleaner, the first backdoor mitigation method on GNNs. GCleaner can mitigate the presence of the backdoor logic within backdoored GNNs by reversing the backdoor learning procedure, aiming to restore the model performance to a level similar to that is directly trained on the original clean dataset. To achieve this objective, we ask: How to recover universal and hard backdoor triggers in GNNs? How to unlearn the backdoor trigger feature while maintaining the model performance? We conduct the graph trigger recovery via the explanation method to identify optimal trigger locations, facilitating the search of universal and hard backdoor triggers in the feature space of the backdoored model through maximal similarity. Subsequently, we introduce the backdoor unlearning mechanism, which combines knowledge distillation and gradient-based explainable knowledge for fine-grained backdoor erasure. Extensive experimental evaluations on four benchmark datasets demonstrate that GCleaner can reduce the backdoor attack success rate to 10% with only 1% of clean data, and has almost negligible degradation in model performance, which far outperforms the state-of-the-art (SOTA) defense methods.
Abstract:The remarkable achievements of Artificial Intelligence (AI) algorithms, particularly in Machine Learning (ML) and Deep Learning (DL), have fueled their extensive deployment across multiple sectors, including Software Engineering (SE). However, due to their black-box nature, these promising AI-driven SE models are still far from being deployed in practice. This lack of explainability poses unwanted risks for their applications in critical tasks, such as vulnerability detection, where decision-making transparency is of paramount importance. This paper endeavors to elucidate this interdisciplinary domain by presenting a systematic literature review of approaches that aim to improve the explainability of AI models within the context of SE. The review canvasses work appearing in the most prominent SE & AI conferences and journals, and spans 63 papers across 21 unique SE tasks. Based on three key Research Questions (RQs), we aim to (1) summarize the SE tasks where XAI techniques have shown success to date; (2) classify and analyze different XAI techniques; and (3) investigate existing evaluation approaches. Based on our findings, we identified a set of challenges remaining to be addressed in existing studies, together with a roadmap highlighting potential opportunities we deemed appropriate and important for future work.
Abstract:Laparoscopic surgery offers minimally invasive procedures with better patient outcomes, but smoke presence challenges visibility and safety. Existing learning-based methods demand large datasets and high computational resources. We propose the Progressive Frequency-Aware Network (PFAN), a lightweight GAN framework for laparoscopic image desmoking, combining the strengths of CNN and Transformer for progressive information extraction in the frequency domain. PFAN features CNN-based Multi-scale Bottleneck-Inverting (MBI) Blocks for capturing local high-frequency information and Locally-Enhanced Axial Attention Transformers (LAT) for efficiently handling global low-frequency information. PFAN efficiently desmokes laparoscopic images even with limited training data. Our method outperforms state-of-the-art approaches in PSNR, SSIM, CIEDE2000, and visual quality on the Cholec80 dataset and retains only 629K parameters. Our code and models are made publicly available at: https://github.com/jlzcode/PFAN.
Abstract:In this paper, we present a hybrid X-shaped vision Transformer, named Xformer, which performs notably on image denoising tasks. We explore strengthening the global representation of tokens from different scopes. In detail, we adopt two types of Transformer blocks. The spatial-wise Transformer block performs fine-grained local patches interactions across tokens defined by spatial dimension. The channel-wise Transformer block performs direct global context interactions across tokens defined by channel dimension. Based on the concurrent network structure, we design two branches to conduct these two interaction fashions. Within each branch, we employ an encoder-decoder architecture to capture multi-scale features. Besides, we propose the Bidirectional Connection Unit (BCU) to couple the learned representations from these two branches while providing enhanced information fusion. The joint designs make our Xformer powerful to conduct global information modeling in both spatial and channel dimensions. Extensive experiments show that Xformer, under the comparable model complexity, achieves state-of-the-art performance on the synthetic and real-world image denoising tasks.
Abstract:Automatic image cropping algorithms aim to recompose images like human-being photographers by generating the cropping boxes with improved composition quality. Cropping box regression approaches learn the beauty of composition from annotated cropping boxes. However, the bias of annotations leads to quasi-trivial recomposing results, which has an obvious tendency to the average location of training samples. The crux of this predicament is that the task is naively treated as a box regression problem, where rare samples might be dominated by normal samples, and the composition patterns of rare samples are not well exploited. Observing that similar composition patterns tend to be shared by the cropping boundaries annotated nearly, we argue to find the beauty of composition from the rare samples by clustering the samples with similar cropping boundary annotations, ie, similar composition patterns. We propose a novel Contrastive Composition Clustering (C2C) to regularize the composition features by contrasting dynamically established similar and dissimilar pairs. In this way, common composition patterns of multiple images can be better summarized, which especially benefits the rare samples and endows our model with better generalizability to render nontrivial results. Extensive experimental results show the superiority of our model compared with prior arts. We also illustrate the philosophy of our design with an interesting analytical visualization.
Abstract:Recently, Transformer-based image restoration networks have achieved promising improvements over convolutional neural networks due to parameter-independent global interactions. To lower computational cost, existing works generally limit self-attention computation within non-overlapping windows. However, each group of tokens are always from a dense area of the image. This is considered as a dense attention strategy since the interactions of tokens are restrained in dense regions. Obviously, this strategy could result in restricted receptive fields. To address this issue, we propose Attention Retractable Transformer (ART) for image restoration, which presents both dense and sparse attention modules in the network. The sparse attention module allows tokens from sparse areas to interact and thus provides a wider receptive field. Furthermore, the alternating application of dense and sparse attention modules greatly enhances representation ability of Transformer while providing retractable attention on the input image.We conduct extensive experiments on image super-resolution, denoising, and JPEG compression artifact reduction tasks. Experimental results validate that our proposed ART outperforms state-of-the-art methods on various benchmark datasets both quantitatively and visually. We also provide code and models at the website https://github.com/gladzhang/ART.