Abstract:Graph Neural Networks (GNNs) have achieved remarkable performance through their message-passing mechanism. However, recent studies have highlighted the vulnerability of GNNs to backdoor attacks, which can lead the model to misclassify graphs with attached triggers as the target class. The effectiveness of recent promising defense techniques, such as fine-tuning or distillation, is heavily contingent on having comprehensive knowledge of the sufficient training dataset. Empirical studies have shown that fine-tuning methods require a clean dataset of 20% to reduce attack accuracy to below 25%, while distillation methods require a clean dataset of 15%. However, obtaining such a large amount of clean data is commonly impractical. In this paper, we propose a practical backdoor mitigation framework, denoted as GRAPHNAD, which can capture high-quality intermediate-layer representations in GNNs to enhance the distillation process with limited clean data. To achieve this, we address the following key questions: How to identify the appropriate attention representations in graphs for distillation? How to enhance distillation with limited data? By adopting the graph attention transfer method, GRAPHNAD can effectively align the intermediate-layer attention representations of the backdoored model with that of the teacher model, forcing the backdoor neurons to transform into benign ones. Besides, we extract the relation maps from intermediate-layer transformation and enforce the relation maps of the backdoored model to be consistent with that of the teacher model, thereby ensuring model accuracy while further reducing the influence of backdoors. Extensive experimental results show that by fine-tuning a teacher model with only 3% of the clean data, GRAPHNAD can reduce the attack success rate to below 5%.
Abstract:Evaluating Large Language Models (LLMs) is crucial for understanding their capabilities and limitations across various applications, including natural language processing and code generation. Existing benchmarks like MMLU, C-Eval, and HumanEval assess general LLM performance but lack focus on specific expert domains such as cybersecurity. Previous attempts to create cybersecurity datasets have faced limitations, including insufficient data volume and a reliance on multiple-choice questions (MCQs). To address these gaps, we propose SecBench, a multi-dimensional benchmarking dataset designed to evaluate LLMs in the cybersecurity domain. SecBench includes questions in various formats (MCQs and short-answer questions (SAQs)), at different capability levels (Knowledge Retention and Logical Reasoning), in multiple languages (Chinese and English), and across various sub-domains. The dataset was constructed by collecting high-quality data from open sources and organizing a Cybersecurity Question Design Contest, resulting in 44,823 MCQs and 3,087 SAQs. Particularly, we used the powerful while cost-effective LLMs to (1). label the data and (2). constructing a grading agent for automatic evaluation of SAQs.Benchmarking results on 13 SOTA LLMs demonstrate the usability of SecBench, which is arguably the largest and most comprehensive benchmark dataset for LLMs in cybersecurity. More information about SecBench can be found at our website, and the dataset can be accessed via the artifact link.
Abstract:Recent advancements in text-to-3D generation can generate neural radiance fields (NeRFs) with score distillation sampling, enabling 3D asset creation without real-world data capture. With the rapid advancement in NeRF generation quality, protecting the copyright of the generated NeRF has become increasingly important. While prior works can watermark NeRFs in a post-generation way, they suffer from two vulnerabilities. First, a delay lies between NeRF generation and watermarking because the secret message is embedded into the NeRF model post-generation through fine-tuning. Second, generating a non-watermarked NeRF as an intermediate creates a potential vulnerability for theft. To address both issues, we propose Dreamark to embed a secret message by backdooring the NeRF during NeRF generation. In detail, we first pre-train a watermark decoder. Then, the Dreamark generates backdoored NeRFs in a way that the target secret message can be verified by the pre-trained watermark decoder on an arbitrary trigger viewport. We evaluate the generation quality and watermark robustness against image- and model-level attacks. Extensive experiments show that the watermarking process will not degrade the generation quality, and the watermark achieves 90+% accuracy among both image-level attacks (e.g., Gaussian noise) and model-level attacks (e.g., pruning attack).
Abstract:Numerous safety- or security-critical systems depend on cameras to perceive their surroundings, further allowing artificial intelligence (AI) to analyze the captured images to make important decisions. However, a concerning attack vector has emerged, namely, electromagnetic waves, which pose a threat to the integrity of these systems. Such attacks enable attackers to manipulate the images remotely, leading to incorrect AI decisions, e.g., autonomous vehicles missing detecting obstacles ahead resulting in collisions. The lack of understanding regarding how different systems react to such attacks poses a significant security risk. Furthermore, no effective solutions have been demonstrated to mitigate this threat. To address these gaps, we modeled the attacks and developed a simulation method for generating adversarial images. Through rigorous analysis, we confirmed that the effects of the simulated adversarial images are indistinguishable from those from real attacks. This method enables researchers and engineers to rapidly assess the susceptibility of various AI vision applications to these attacks, without the need for constructing complicated attack devices. In our experiments, most of the models demonstrated vulnerabilities to these attacks, emphasizing the need to enhance their robustness. Fortunately, our modeling and simulation method serves as a stepping stone toward developing more resilient models. We present a pilot study on adversarial training to improve their robustness against attacks, and our results demonstrate a significant improvement by recovering up to 91% performance, offering a promising direction for mitigating this threat.
Abstract:Object detection can localize and identify objects in images, and it is extensively employed in critical multimedia applications such as security surveillance and autonomous driving. Despite the success of existing object detection models, they are often evaluated in ideal scenarios where captured images guarantee the accurate and complete representation of the detecting scenes. However, images captured by image sensors may be affected by different factors in real applications, including cyber-physical attacks. In particular, attackers can exploit hardware properties within the systems to inject electromagnetic interference so as to manipulate the images. Such attacks can cause noisy or incomplete information about the captured scene, leading to incorrect detection results, potentially granting attackers malicious control over critical functions of the systems. This paper presents a research work that comprehensively quantifies and analyzes the impacts of such attacks on state-of-the-art object detection models in practice. It also sheds light on the underlying reasons for the incorrect detection outcomes.
Abstract:The signed distance field (SDF) represents 3D geometries in continuous function space. Due to its continuous nature, explicit 3D models (e.g., meshes) can be extracted from it at arbitrary resolution, which means losing the SDF is equivalent to losing the mesh. Recent research has shown meshes can also be extracted from SDF-enhanced neural radiance fields (NeRF). Such a signal raises an alarm that any implicit neural representation with SDF enhancement can extract the original mesh, which indicates identifying the SDF's intellectual property becomes an urgent issue. This paper proposes FuncMark, a robust and invisible watermarking method to protect the copyright of signed distance fields by leveraging analytic on-surface deformations to embed binary watermark messages. Such deformation can survive isosurfacing and thus be inherited by the extracted meshes for further watermark message decoding. Our method can recover the message with high-resolution meshes extracted from SDFs and detect the watermark even when mesh vertices are extremely sparse. Furthermore, our method is robust even when various distortions (including remeshing) are encountered. Extensive experiments demonstrate that our \tool significantly outperforms state-of-the-art approaches and the message is still detectable even when only 50 vertex samples are given.
Abstract:Large Language Models (LLMs) have significantly impacted numerous domains, including Software Engineering (SE). Many recent publications have explored LLMs applied to various SE tasks. Nevertheless, a comprehensive understanding of the application, effects, and possible limitations of LLMs on SE is still in its early stages. To bridge this gap, we conducted a systematic literature review on LLM4SE, with a particular focus on understanding how LLMs can be exploited to optimize processes and outcomes. We collect and analyze 229 research papers from 2017 to 2023 to answer four key research questions (RQs). In RQ1, we categorize different LLMs that have been employed in SE tasks, characterizing their distinctive features and uses. In RQ2, we analyze the methods used in data collection, preprocessing, and application highlighting the role of well-curated datasets for successful LLM for SE implementation. RQ3 investigates the strategies employed to optimize and evaluate the performance of LLMs in SE. Finally, RQ4 examines the specific SE tasks where LLMs have shown success to date, illustrating their practical contributions to the field. From the answers to these RQs, we discuss the current state-of-the-art and trends, identifying gaps in existing research, and flagging promising areas for future study.
Abstract:Graph anomaly detection (GAD) has achieved success and has been widely applied in various domains, such as fraud detection, cybersecurity, finance security, and biochemistry. However, existing graph anomaly detection algorithms focus on distinguishing individual entities (nodes or graphs) and overlook the possibility of anomalous groups within the graph. To address this limitation, this paper introduces a novel unsupervised framework for a new task called Group-level Graph Anomaly Detection (Gr-GAD). The proposed framework first employs a variant of Graph AutoEncoder (GAE) to locate anchor nodes that belong to potential anomaly groups by capturing long-range inconsistencies. Subsequently, group sampling is employed to sample candidate groups, which are then fed into the proposed Topology Pattern-based Graph Contrastive Learning (TPGCL) method. TPGCL utilizes the topology patterns of groups as clues to generate embeddings for each candidate group and thus distinct anomaly groups. The experimental results on both real-world and synthetic datasets demonstrate that the proposed framework shows superior performance in identifying and localizing anomaly groups, highlighting it as a promising solution for Gr-GAD. Datasets and codes of the proposed framework are at the github repository https://anonymous.4open.science/r/Topology-Pattern-Enhanced-Unsupervised-Group-level-Graph-Anomaly-Detection.
Abstract:Encrypted traffic classification is receiving widespread attention from researchers and industrial companies. However, the existing methods only extract flow-level features, failing to handle short flows because of unreliable statistical properties, or treat the header and payload equally, failing to mine the potential correlation between bytes. Therefore, in this paper, we propose a byte-level traffic graph construction approach based on point-wise mutual information (PMI), and a model named Temporal Fusion Encoder using Graph Neural Networks (TFE-GNN) for feature extraction. In particular, we design a dual embedding layer, a GNN-based traffic graph encoder as well as a cross-gated feature fusion mechanism, which can first embed the header and payload bytes separately and then fuses them together to obtain a stronger feature representation. The experimental results on two real datasets demonstrate that TFE-GNN outperforms multiple state-of-the-art methods in fine-grained encrypted traffic classification tasks.
Abstract:Knowledge graph reasoning (KGR) -- answering complex logical queries over large knowledge graphs -- represents an important artificial intelligence task, entailing a range of applications (e.g., cyber threat hunting). However, despite its surging popularity, the potential security risks of KGR are largely unexplored, which is concerning, given the increasing use of such capability in security-critical domains. This work represents a solid initial step towards bridging the striking gap. We systematize the security threats to KGR according to the adversary's objectives, knowledge, and attack vectors. Further, we present ROAR, a new class of attacks that instantiate a variety of such threats. Through empirical evaluation in representative use cases (e.g., medical decision support, cyber threat hunting, and commonsense reasoning), we demonstrate that ROAR is highly effective to mislead KGR to suggest pre-defined answers for target queries, yet with negligible impact on non-target ones. Finally, we explore potential countermeasures against ROAR, including filtering of potentially poisoning knowledge and training with adversarially augmented queries, which leads to several promising research directions.