Abstract:This paper presents a novel multi-stream downlink communication system that utilizes a transmissive reconfigurable intelligent surface (RIS) transceiver. Specifically, we elaborate the downlink communication scheme using time-modulated array (TMA) technology, which enables high order modulation and multi-stream beamforming. Then, an optimization problem is formulated to maximize the minimum signal-to-interference-plusnoise ratio (SINR) with user fairness, which takes into account the constraint of the maximum available power for each transmissive element. Due to the non-convex nature of the formulated problem,finding optimal solution is challenging. To mitigate the complexity,we propose a linear-complexity beamforming algorithm based on consensus alternating direction method of multipliers (ADMM).Specifically, by introducing a set of auxiliary variables, the problem can be decomposed into multiple sub-problems that are amenable to parallel computation, where the each sub-problem can yield closed-form expressions, bringing a significant reduction in the computational complexity. The overall problem achieves convergence by iteratively addressing these sub-problems in an alternating manner. Finally, the convergence of the proposed algorithm and the impact of various parameter configurations on the system performance are validated through numerical simulations.
Abstract:This paper investigates a movable antenna (MA)-assisted multiuser integrated sensing and communication (ISAC) system, where the base station (BS) and communication users are all equipped with MA for improving both the sensing and communication performance. We employ the Cramer-Rao bound (CRB) as the performance metric of sensing, thus a joint beamforming design and MAs' position optimizing problem is formulated to minimize the CRB. However the resulting optimization problem is NP-hard and the variables are highly coupled. To tackle this problem, we propose an alternating optimization (AO) framework by adopting semidefinite relaxation (SDR) and successive convex approximation (SCA) technique. Numerical results reveal that the proposed MA-assisted ISAC system achieves lower estimation CRB compared to the fixed-position antenna (FPA) counterpart.
Abstract:This paper investigates a multiple input single output (MISO) downlink communication system in which users are equipped with movable antennas (MAs). First, We adopt a field-response based channel model to characterize the downlink channel with respect to MAs' positions. Then, we aim to minimize the total transmit power by jointly optimizing the MAs' positions and beamforming matrix. To solve the resulting non-convex problem, we employ an alternating optimization (AO) algorithm based on penalty method and successive convex approximation (SCA) to obtain a sub-optimal solution. Numerical results demonstrate that the MA-enabled communication system perform better than conventional fixed position antennas.
Abstract:Loss functions is a crucial factor than affecting the detection precision in object detection task. In this paper, we optimize both two loss functions for classification and localization simultaneously. Firstly, by multiplying an IoU-based coefficient by the standard cross entropy loss in classification loss function, the correlation between localization and classification is established. Compared to the existing studies, in which the correlation is only applied to improve the localization accuracy for positive samples, this paper utilizes the correlation to obtain the really hard negative samples and aims to decrease the misclassified rate for negative samples. Besides, a novel localization loss named MIoU is proposed by incorporating a Mahalanobis distance between predicted box and target box, which eliminate the gradients inconsistency problem in the DIoU loss, further improving the localization accuracy. Finally, sufficient experiments for nighttime vehicle detection have been done on two datasets. Our results show than when train with the proposed loss functions, the detection performance can be outstandingly improved. The source code and trained models are available at https://github.com/therebellll/NegIoU-PosIoU-Miou.